aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
blob: b0273aaaf369b66b9ab8a3661cb40fcc0d5e4129 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CONJUGATE_GRADIENT_H
#define EIGEN_CONJUGATE_GRADIENT_H

namespace Eigen { 

namespace internal {

/** \internal Low-level conjugate gradient algorithm
  * \param mat The matrix A
  * \param rhs The right hand side vector b
  * \param x On input and initial solution, on output the computed solution.
  * \param precond A preconditioner being able to efficiently solve for an
  *                approximation of Ax=b (regardless of b)
  * \param iters On input the max number of iteration, on output the number of performed iterations.
  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
  */
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
                        const Preconditioner& precond, int& iters,
                        typename Dest::RealScalar& tol_error)
{
  using std::sqrt;
  using std::abs;
  typedef typename Dest::RealScalar RealScalar;
  typedef typename Dest::Scalar Scalar;
  typedef Matrix<Scalar,Dynamic,1> VectorType;
  
  RealScalar tol = tol_error;
  int maxIters = iters;
  
  int n = mat.cols();

  VectorType residual = rhs - mat * x; //initial residual

  RealScalar rhsNorm2 = rhs.squaredNorm();
  if(rhsNorm2 == 0) 
  {
    x.setZero();
    iters = 0;
    tol_error = 0;
    return;
  }
  RealScalar threshold = tol*tol*rhsNorm2;
  RealScalar residualNorm2 = residual.squaredNorm();
  if (residualNorm2 < threshold)
  {
    iters = 0;
    tol_error = sqrt(residualNorm2 / rhsNorm2);
    return;
  }
  
  VectorType p(n);
  p = precond.solve(residual);      //initial search direction

  VectorType z(n), tmp(n);
  RealScalar absNew = numext::real(residual.dot(p));  // the square of the absolute value of r scaled by invM
  int i = 0;
  while(i < maxIters)
  {
    tmp.noalias() = mat * p;              // the bottleneck of the algorithm

    Scalar alpha = absNew / p.dot(tmp);   // the amount we travel on dir
    x += alpha * p;                       // update solution
    residual -= alpha * tmp;              // update residue
    
    residualNorm2 = residual.squaredNorm();
    if(residualNorm2 < threshold)
      break;
    
    z = precond.solve(residual);          // approximately solve for "A z = residual"

    RealScalar absOld = absNew;
    absNew = numext::real(residual.dot(z));     // update the absolute value of r
    RealScalar beta = absNew / absOld;            // calculate the Gram-Schmidt value used to create the new search direction
    p = z + beta * p;                             // update search direction
    i++;
  }
  tol_error = sqrt(residualNorm2 / rhsNorm2);
  iters = i;
}

}

template< typename _MatrixType, int _UpLo=Lower,
          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class ConjugateGradient;

namespace internal {

template< typename _MatrixType, int _UpLo, typename _Preconditioner>
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
  typedef _MatrixType MatrixType;
  typedef _Preconditioner Preconditioner;
};

}

/** \ingroup IterativeLinearSolvers_Module
  * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
  *
  * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
  * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
  *               or Upper. Default is Lower.
  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
  *
  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
  * and NumTraits<Scalar>::epsilon() for the tolerance.
  * 
  * This class can be used as the direct solver classes. Here is a typical usage example:
  * \code
  * int n = 10000;
  * VectorXd x(n), b(n);
  * SparseMatrix<double> A(n,n);
  * // fill A and b
  * ConjugateGradient<SparseMatrix<double> > cg;
  * cg.compute(A);
  * x = cg.solve(b);
  * std::cout << "#iterations:     " << cg.iterations() << std::endl;
  * std::cout << "estimated error: " << cg.error()      << std::endl;
  * // update b, and solve again
  * x = cg.solve(b);
  * \endcode
  * 
  * By default the iterations start with x=0 as an initial guess of the solution.
  * One can control the start using the solveWithGuess() method. Here is a step by
  * step execution example starting with a random guess and printing the evolution
  * of the estimated error:
  * * \code
  * x = VectorXd::Random(n);
  * cg.setMaxIterations(1);
  * int i = 0;
  * do {
  *   x = cg.solveWithGuess(b,x);
  *   std::cout << i << " : " << cg.error() << std::endl;
  *   ++i;
  * } while (cg.info()!=Success && i<100);
  * \endcode
  * Note that such a step by step excution is slightly slower.
  * 
  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
  */
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
  typedef IterativeSolverBase<ConjugateGradient> Base;
  using Base::mp_matrix;
  using Base::m_error;
  using Base::m_iterations;
  using Base::m_info;
  using Base::m_isInitialized;
public:
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef _Preconditioner Preconditioner;

  enum {
    UpLo = _UpLo
  };

public:

  /** Default constructor. */
  ConjugateGradient() : Base() {}

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  ConjugateGradient(const MatrixType& A) : Base(A) {}

  ~ConjugateGradient() {}
  
#ifndef EIGEN_TEST_EVALUATORS
  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    * \a x0 as an initial solution.
    *
    * \sa compute()
    */
  template<typename Rhs,typename Guess>
  inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
  {
    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
    eigen_assert(Base::rows()==b.rows()
              && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
    return internal::solve_retval_with_guess
            <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
  }
#endif

  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve_with_guess_impl(const Rhs& b, Dest& x) const
  {
    m_iterations = Base::maxIterations();
    m_error = Base::m_tolerance;

    for(int j=0; j<b.cols(); ++j)
    {
      m_iterations = Base::maxIterations();
      m_error = Base::m_tolerance;

      typename Dest::ColXpr xj(x,j);
      internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
                                   Base::m_preconditioner, m_iterations, m_error);
    }

    m_isInitialized = true;
    m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
  }
  
  /** \internal */
  using Base::_solve_impl;
  template<typename Rhs,typename Dest>
  void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
  {
    x.setOnes();
    _solve_with_guess_impl(b.derived(),x);
  }

protected:

};

#ifndef EIGEN_TEST_EVALUATORS
namespace internal {

template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
  : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
{
  typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve_impl(rhs(),dst);
  }
};

} // end namespace internal
#endif

} // end namespace Eigen

#endif // EIGEN_CONJUGATE_GRADIENT_H