aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
blob: c9fe9c618496bbd8ba95b76660d8dc16a86f58ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_BASIC_PRECONDITIONERS_H
#define EIGEN_BASIC_PRECONDITIONERS_H

namespace Eigen { 

/** \ingroup IterativeLinearSolvers_Module
  * \brief A preconditioner based on the digonal entries
  *
  * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
  * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
  * \code
  * A.diagonal().asDiagonal() . x = b
  * \endcode
  *
  * \tparam _Scalar the type of the scalar.
  *
  * This preconditioner is suitable for both selfadjoint and general problems.
  * The diagonal entries are pre-inverted and stored into a dense vector.
  *
  * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
  *
  */
template <typename _Scalar>
class DiagonalPreconditioner
{
    typedef _Scalar Scalar;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef typename Vector::Index Index;

  public:
    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;

    DiagonalPreconditioner() : m_isInitialized(false) {}

    template<typename MatrixType>
    DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols())
    {
      compute(mat);
    }

    Index rows() const { return m_invdiag.size(); }
    Index cols() const { return m_invdiag.size(); }
    
    template<typename MatrixType>
    DiagonalPreconditioner& analyzePattern(const MatrixType& )
    {
      return *this;
    }
    
    template<typename MatrixType>
    DiagonalPreconditioner& factorize(const MatrixType& mat)
    {
      m_invdiag.resize(mat.cols());
      for(int j=0; j<mat.outerSize(); ++j)
      {
        typename MatrixType::InnerIterator it(mat,j);
        while(it && it.index()!=j) ++it;
        if(it && it.index()==j)
          m_invdiag(j) = Scalar(1)/it.value();
        else
          m_invdiag(j) = 0;
      }
      m_isInitialized = true;
      return *this;
    }
    
    template<typename MatrixType>
    DiagonalPreconditioner& compute(const MatrixType& mat)
    {
      return factorize(mat);
    }

    template<typename Rhs, typename Dest>
    void _solve(const Rhs& b, Dest& x) const
    {
      x = m_invdiag.array() * b.array() ;
    }

    template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
      eigen_assert(m_invdiag.size()==b.rows()
                && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
    }

  protected:
    Vector m_invdiag;
    bool m_isInitialized;
};

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
  : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
{
  typedef DiagonalPreconditioner<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

}

/** \ingroup IterativeLinearSolvers_Module
  * \brief A naive preconditioner which approximates any matrix as the identity matrix
  *
  * \sa class DiagonalPreconditioner
  */
class IdentityPreconditioner
{
  public:

    IdentityPreconditioner() {}

    template<typename MatrixType>
    IdentityPreconditioner(const MatrixType& ) {}
    
    template<typename MatrixType>
    IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
    
    template<typename MatrixType>
    IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }

    template<typename MatrixType>
    IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
    
    template<typename Rhs>
    inline const Rhs& solve(const Rhs& b) const { return b; }
};

} // end namespace Eigen

#endif // EIGEN_BASIC_PRECONDITIONERS_H