aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Geometry/Umeyama.h
blob: c34eb1a98272cf591190ab0928434307fa7bdd2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_UMEYAMA_H
#define EIGEN_UMEYAMA_H

// This file requires the user to include 
// * Eigen/Core
// * Eigen/LU 
// * Eigen/SVD
// * Eigen/Array

#ifndef EIGEN_PARSED_BY_DOXYGEN

// These helpers are required since it allows to use mixed types as parameters
// for the Umeyama. The problem with mixed parameters is that the return type
// cannot trivially be deduced when float and double types are mixed.
namespace internal {

// Compile time return type deduction for different MatrixBase types.
// Different means here different alignment and parameters but the same underlying
// real scalar type.
template<typename MatrixType, typename OtherMatrixType>
struct umeyama_transform_matrix_type
{
  enum {
    MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),

    // When possible we want to choose some small fixed size value since the result
    // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
    HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
  };

  typedef Matrix<typename traits<MatrixType>::Scalar,
    HomogeneousDimension,
    HomogeneousDimension,
    AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
    HomogeneousDimension,
    HomogeneousDimension
  > type;
};

}

#endif

/**
* \geometry_module \ingroup Geometry_Module
*
* \brief Returns the transformation between two point sets.
*
* The algorithm is based on:
* "Least-squares estimation of transformation parameters between two point patterns",
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
*
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
* \f{align*}
*   \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
* \f}
* is minimized.
*
* The algorithm is based on the analysis of the covariance matrix
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where 
* \f$d\f$ is corresponding to the dimension (which is typically small).
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
* though the actual computational effort lies in the covariance
* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when 
* the input point sets have dimension \f$d \times m\f$.
*
* Currently the method is working only for floating point matrices.
*
* \todo Should the return type of umeyama() become a Transform?
*
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
* \return The homogeneous transformation 
* \f{align*}
*   T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
* \f}
* minimizing the resudiual above. This transformation is always returned as an 
* Eigen::Matrix.
*/
template <typename Derived, typename OtherDerived>
typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
{
  typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
  typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename Derived::Index Index;

  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
  EIGEN_STATIC_ASSERT((internal::is_same_type<Scalar, typename internal::traits<OtherDerived>::Scalar>::ret),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };

  typedef Matrix<Scalar, Dimension, 1> VectorType;
  typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
  typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;

  const Index m = src.rows(); // dimension
  const Index n = src.cols(); // number of measurements

  // required for demeaning ...
  const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);

  // computation of mean
  const VectorType src_mean = src.rowwise().sum() * one_over_n;
  const VectorType dst_mean = dst.rowwise().sum() * one_over_n;

  // demeaning of src and dst points
  const RowMajorMatrixType src_demean = src.colwise() - src_mean;
  const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;

  // Eq. (36)-(37)
  const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;

  // Eq. (38)
  const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();

  JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);

  // Initialize the resulting transformation with an identity matrix...
  TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);

  // Eq. (39)
  VectorType S = VectorType::Ones(m);
  if (sigma.determinant()<0) S(m-1) = -1;

  // Eq. (40) and (43)
  const VectorType& d = svd.singularValues();
  Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
  if (rank == m-1) {
    if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
      Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
    } else {
      const Scalar s = S(m-1); S(m-1) = -1;
      Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
      S(m-1) = s;
    }
  } else {
    Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
  }

  // Eq. (42)
  const Scalar c = 1/src_var * svd.singularValues().dot(S);

  // Eq. (41)
  // Note that we first assign dst_mean to the destination so that there no need
  // for a temporary.
  Rt.col(m).head(m) = dst_mean;
  Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;

  if (with_scaling) Rt.block(0,0,m,m) *= c;

  return Rt;
}

#endif // EIGEN_UMEYAMA_H