1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Scaling
*
* \brief Represents a generic uniform scaling transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it
* is used. In particular, this class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* To represent an axis aligned scaling, use the DiagonalMatrix class.
*
* \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
*/
template<typename _Scalar>
class UniformScaling
{
public:
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
protected:
Scalar m_factor;
public:
/** Default constructor without initialization. */
UniformScaling() {}
/** Constructs and initialize a uniform scaling transformation */
explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
inline const Scalar& factor() const { return m_factor; }
inline Scalar& factor() { return m_factor; }
/** Concatenates two uniform scaling */
inline UniformScaling operator* (const UniformScaling& other) const
{ return UniformScaling(m_factor * other.factor()); }
/** Concatenates a uniform scaling and a translation */
template<int Dim>
inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
/** Concatenates a uniform scaling and an affine transformation */
template<int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
{
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
res.prescale(factor());
return res;
}
/** Concatenates a uniform scaling and a linear transformation matrix */
// TODO returns an expression
template<typename Derived>
inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
{ return other * m_factor; }
template<typename Derived,int Dim>
inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
{ return r.toRotationMatrix() * m_factor; }
/** \returns the inverse scaling */
inline UniformScaling inverse() const
{ return UniformScaling(Scalar(1)/m_factor); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline UniformScaling<NewScalarType> cast() const
{ return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
{ m_factor = Scalar(other.factor()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_factor, other.factor(), prec); }
};
/** Concatenates a linear transformation matrix and a uniform scaling */
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
{ return derived() * s.factor(); }
/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
{ return UniformScaling<std::complex<RealScalar> >(s); }
/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
/** Constructs an axis aligned scaling expression from vector expression \a coeffs
* This is an alias for coeffs.asDiagonal()
*/
template<typename Derived>
static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
{ return coeffs.asDiagonal(); }
/** \addtogroup Geometry_Module */
//@{
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double,2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}
template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim,Affine>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
Transform<Scalar,Dim,Affine> res;
res.matrix().setZero();
res.linear().diagonal().fill(factor());
res.translation() = factor() * t.vector();
res(Dim,Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_SCALING_H
|