1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ROTATION_H
#define EIGEN_ROTATION_H
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
/** \internal
*
* \class ToRotationMatrix
*
* \brief Template static struct to convert any rotation representation to a matrix form
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
* \param RotationType the input type of the rotation
*
* This class defines a single static member with the following prototype:
* \code
* static <MatrixExpression> convert(const RotationType& r);
* \endcode
* where \c <MatrixExpression> must be a fixed-size matrix expression of size Dim x Dim and
* coefficient type Scalar.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - Quaternion,
* - AngleAxis.
*
* Currently ToRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*
*/
template<typename Scalar, int Dim, typename RotationType>
struct ToRotationMatrix;
// 2D rotation to matrix
template<typename Scalar, typename OtherScalarType>
struct ToRotationMatrix<Scalar, 2, OtherScalarType>
{
inline static Matrix<Scalar,2,2> convert(const OtherScalarType& r)
{ return Rotation2D<Scalar>(r).toRotationMatrix(); }
};
// 2D rotation to rotation matrix
template<typename Scalar, typename OtherScalarType>
struct ToRotationMatrix<Scalar, 2, Rotation2D<OtherScalarType> >
{
inline static Matrix<Scalar,2,2> convert(const Rotation2D<OtherScalarType>& r)
{ return Rotation2D<Scalar>(r).toRotationMatrix(); }
};
// quaternion to rotation matrix
template<typename Scalar, typename OtherScalarType>
struct ToRotationMatrix<Scalar, 3, Quaternion<OtherScalarType> >
{
inline static Matrix<Scalar,3,3> convert(const Quaternion<OtherScalarType>& q)
{ return q.toRotationMatrix(); }
};
// angle axis to rotation matrix
template<typename Scalar, typename OtherScalarType>
struct ToRotationMatrix<Scalar, 3, AngleAxis<OtherScalarType> >
{
inline static Matrix<Scalar,3,3> convert(const AngleAxis<OtherScalarType>& aa)
{ return aa.toRotationMatrix(); }
};
// matrix xpr to matrix xpr
template<typename Scalar, int Dim, typename OtherDerived>
struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
{
inline static const MatrixBase<OtherDerived>& convert(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
you_did_a_programming_error);
return mat;
}
};
/** \geometry_module \ingroup GeometryModule
*
* \class Rotation2D
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
* interface to Quaternion in order to facilitate the writing of generic algorithms
* dealing with rotations.
*
* \sa class Quaternion, class Transform
*/
template<typename _Scalar>
class Rotation2D
{
public:
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
Scalar m_angle;
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
inline Rotation2D(Scalar a) : m_angle(a) {}
/** \returns the rotation angle */
inline Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the rotation angle */
inline Scalar& angle() { return m_angle; }
/** Automatic convertion to a 2D rotation matrix.
* \sa toRotationMatrix()
*/
inline operator Matrix2() const { return toRotationMatrix(); }
/** \returns the inverse rotation */
inline Rotation2D inverse() const { return -m_angle; }
/** Concatenates two rotations */
inline Rotation2D operator*(const Rotation2D& other) const
{ return m_angle + other.m_angle; }
/** Concatenates two rotations */
inline Rotation2D& operator*=(const Rotation2D& other)
{ return m_angle += other.m_angle; }
/** Applies the rotation to a 2D vector */
Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix2 toRotationMatrix(void) const;
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
{ return m_angle * (1-t) + t * other; }
};
/** \ingroup GeometryModule
* single precision 2D rotation type */
typedef Rotation2D<float> Rotation2Df;
/** \ingroup GeometryModule
* double precision 2D rotation type */
typedef Rotation2D<double> Rotation2Dd;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle
* from the rotation matrix.
*/
template<typename Scalar>
template<typename Derived>
Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,you_did_a_programming_error);
m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
}
/** Constructs and \returns an equivalent 2x2 rotation matrix.
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
Rotation2D<Scalar>::toRotationMatrix(void) const
{
Scalar sinA = ei_sin(m_angle);
Scalar cosA = ei_cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
}
#endif // EIGEN_ROTATION_H
|