aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Geometry/Quaternion.h
blob: 9385f259dccc2c3452f84f8d0266336e0757c7c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H

template<typename Other,
         int OtherRows=Other::RowsAtCompileTime,
         int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternion_assign_impl;

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Quaternion
  *
  * \brief The quaternion class used to represent 3D orientations and rotations
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  *
  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
  * orientations and rotations of objects in three dimensions. Compared to other representations
  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
  * \li \b compact storage (4 scalars)
  * \li \b efficient to compose (28 flops),
  * \li \b stable spherical interpolation
  *
  * The following two typedefs are provided for convenience:
  * \li \c Quaternionf for \c float
  * \li \c Quaterniond for \c double
  *
  * \sa  class AngleAxis, class Transform
  */

template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
{
  typedef _Scalar Scalar;
};

template<typename _Scalar>
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
{
  typedef RotationBase<Quaternion<_Scalar>,3> Base;



public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)

  using Base::operator*;

  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;

  /** the type of the Coefficients 4-vector */
  typedef Matrix<Scalar, 4, 1> Coefficients;
  /** the type of a 3D vector */
  typedef Matrix<Scalar,3,1> Vector3;
  /** the equivalent rotation matrix type */
  typedef Matrix<Scalar,3,3> Matrix3;
  /** the equivalent angle-axis type */
  typedef AngleAxis<Scalar> AngleAxisType;

  /** \returns the \c x coefficient */
  inline Scalar x() const { return m_coeffs.coeff(0); }
  /** \returns the \c y coefficient */
  inline Scalar y() const { return m_coeffs.coeff(1); }
  /** \returns the \c z coefficient */
  inline Scalar z() const { return m_coeffs.coeff(2); }
  /** \returns the \c w coefficient */
  inline Scalar w() const { return m_coeffs.coeff(3); }

  /** \returns a reference to the \c x coefficient */
  inline Scalar& x() { return m_coeffs.coeffRef(0); }
  /** \returns a reference to the \c y coefficient */
  inline Scalar& y() { return m_coeffs.coeffRef(1); }
  /** \returns a reference to the \c z coefficient */
  inline Scalar& z() { return m_coeffs.coeffRef(2); }
  /** \returns a reference to the \c w coefficient */
  inline Scalar& w() { return m_coeffs.coeffRef(3); }

  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
  inline const Block<Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }

  /** \returns a vector expression of the imaginary part (x,y,z) */
  inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }

  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
  inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a vector expression of the coefficients (x,y,z,w) */
  inline Coefficients& coeffs() { return m_coeffs; }

  /** Default constructor leaving the quaternion uninitialized. */
  inline Quaternion() {}

  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
    * its four coefficients \a w, \a x, \a y and \a z.
    *
    * \warning Note the order of the arguments: the real \a w coefficient first,
    * while internally the coefficients are stored in the following order:
    * [\c x, \c y, \c z, \c w]
    */
  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
  { m_coeffs << x, y, z, w; }

  /** Copy constructor */
  inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }

  /** Constructs and initializes a quaternion from the angle-axis \a aa */
  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }

  /** Constructs and initializes a quaternion from either:
    *  - a rotation matrix expression,
    *  - a 4D vector expression representing quaternion coefficients.
    * \sa operator=(MatrixBase<Derived>)
    */
  template<typename Derived>
  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }

  Quaternion& operator=(const Quaternion& other);
  Quaternion& operator=(const AngleAxisType& aa);
  template<typename Derived>
  Quaternion& operator=(const MatrixBase<Derived>& m);

  /** \returns a quaternion representing an identity rotation
    * \sa MatrixBase::Identity()
    */
  inline static Quaternion Identity() { return Quaternion(1, 0, 0, 0); }

  /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
    */
  inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }

  /** \returns the squared norm of the quaternion's coefficients
    * \sa Quaternion::norm(), MatrixBase::squaredNorm()
    */
  inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }

  /** \returns the norm of the quaternion's coefficients
    * \sa Quaternion::squaredNorm(), MatrixBase::norm()
    */
  inline Scalar norm() const { return m_coeffs.norm(); }

  /** Normalizes the quaternion \c *this
    * \sa normalized(), MatrixBase::normalize() */
  inline void normalize() { m_coeffs.normalize(); }
  /** \returns a normalized version of \c *this
    * \sa normalize(), MatrixBase::normalized() */
  inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }

  /** \returns the dot product of \c *this and \a other
    * Geometrically speaking, the dot product of two unit quaternions
    * corresponds to the cosine of half the angle between the two rotations.
    * \sa angularDistance()
    */
  inline Scalar dot(const Quaternion& other) const { return m_coeffs.dot(other.m_coeffs); }

  inline Scalar angularDistance(const Quaternion& other) const;

  Matrix3 toRotationMatrix(void) const;

  template<typename Derived1, typename Derived2>
  Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);

  inline Quaternion operator* (const Quaternion& q) const;
  inline Quaternion& operator*= (const Quaternion& q);

  Quaternion inverse(void) const;
  Quaternion conjugate(void) const;

  Quaternion slerp(Scalar t, const Quaternion& other) const;

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
  { return typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

  Vector3 _transformVector(Vector3 v) const;

protected:
  Coefficients m_coeffs;
};

/** \ingroup Geometry_Module
  * single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
  * double precision quaternion type */
typedef Quaternion<double> Quaterniond;

// Generic Quaternion * Quaternion product
template<int Arch,typename Scalar> inline Quaternion<Scalar>
ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
{
  return Quaternion<Scalar>
  (
    a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
    a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
    a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
    a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
  );
}

/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
  return ei_quaternion_product<EiArch>(*this,other);
}

/** \sa operator*(Quaternion) */
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
  return (*this = *this * other);
}

/** Rotation of a vector by a quaternion.
  * \remarks If the quaternion is used to rotate several points (>1)
  * then it is much more efficient to first convert it to a 3x3 Matrix.
  * Comparison of the operation cost for n transformations:
  *   - Quaternion:    30n
  *   - Via a Matrix3: 24 + 15n
  */
template <typename Scalar>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::_transformVector(Vector3 v) const
{
    // Note that this algorithm comes from the optimization by hand
    // of the conversion to a Matrix followed by a Matrix/Vector product.
    // It appears to be much faster than the common algorithm found
    // in the litterature (30 versus 39 flops). It also requires two
    // Vector3 as temporaries.
    Vector3 uv = Scalar(2) * this->vec().cross(v);
    return v + this->w() * uv + this->vec().cross(uv);
}

template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
{
  m_coeffs = other.m_coeffs;
  return *this;
}

/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
  */
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
{
  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
  this->w() = ei_cos(ha);
  this->vec() = ei_sin(ha) * aa.axis();
  return *this;
}

/** Set \c *this from the expression \a xpr:
  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
  *     and \a xpr is converted to a quaternion
  */
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
{
  ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
  return *this;
}

/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
  * be normalized, otherwise the result is undefined.
  */
template<typename Scalar>
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
  // if not inlined then the cost of the return by value is huge ~ +35%,
  // however, not inlining this function is an order of magnitude slower, so
  // it has to be inlined, and so the return by value is not an issue
  Matrix3 res;

  const Scalar tx  = 2*this->x();
  const Scalar ty  = 2*this->y();
  const Scalar tz  = 2*this->z();
  const Scalar twx = tx*this->w();
  const Scalar twy = ty*this->w();
  const Scalar twz = tz*this->w();
  const Scalar txx = tx*this->x();
  const Scalar txy = ty*this->x();
  const Scalar txz = tz*this->x();
  const Scalar tyy = ty*this->y();
  const Scalar tyz = tz*this->y();
  const Scalar tzz = tz*this->z();

  res.coeffRef(0,0) = 1-(tyy+tzz);
  res.coeffRef(0,1) = txy-twz;
  res.coeffRef(0,2) = txz+twy;
  res.coeffRef(1,0) = txy+twz;
  res.coeffRef(1,1) = 1-(txx+tzz);
  res.coeffRef(1,2) = tyz-twx;
  res.coeffRef(2,0) = txz-twy;
  res.coeffRef(2,1) = tyz+twx;
  res.coeffRef(2,2) = 1-(txx+tyy);

  return res;
}

/** Sets \c *this to be a quaternion representing a rotation between
  * the two arbitrary vectors \a a and \a b. In other words, the built
  * rotation represent a rotation sending the line of direction \a a
  * to the line of direction \a b, both lines passing through the origin.
  *
  * \returns a reference to \c *this.
  *
  * Note that the two input vectors do \b not have to be normalized, and
  * do not need to have the same norm.
  */
template<typename Scalar>
template<typename Derived1, typename Derived2>
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
  Vector3 v0 = a.normalized();
  Vector3 v1 = b.normalized();
  Scalar c = v0.dot(v1);

  // if dot == -1, vectors are nearly opposites
  // => accuraletly compute the rotation axis by computing the
  //    intersection of the two planes. This is done by solving:
  //       x^T v0 = 0
  //       x^T v1 = 0
  //    under the constraint:
  //       ||x|| = 1
  //    which yields a singular value problem
  if (c < Scalar(-1)+precision<Scalar>())
  {
    c = std::max<Scalar>(c,-1);
    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
    SVD<Matrix<Scalar,2,3> > svd(m);
    Vector3 axis = svd.matrixV().col(2);

    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
    this->w() = ei_sqrt(w2);
    this->vec() = axis * ei_sqrt(Scalar(1) - w2);
    return *this;
  }
  Vector3 axis = v0.cross(v1);
  Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
  Scalar invs = Scalar(1)/s;
  this->vec() = axis * invs;
  this->w() = s * Scalar(0.5);

  return *this;
}

/** \returns the multiplicative inverse of \c *this
  * Note that in most cases, i.e., if you simply want the opposite rotation,
  * and/or the quaternion is normalized, then it is enough to use the conjugate.
  *
  * \sa Quaternion::conjugate()
  */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
  Scalar n2 = this->squaredNorm();
  if (n2 > 0)
    return Quaternion(conjugate().coeffs() / n2);
  else
  {
    // return an invalid result to flag the error
    return Quaternion(Coefficients::Zero());
  }
}

/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
  * if the quaternion is normalized.
  * The conjugate of a quaternion represents the opposite rotation.
  *
  * \sa Quaternion::inverse()
  */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
{
  return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}

/** \returns the angle (in radian) between two rotations
  * \sa dot()
  */
template <typename Scalar>
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
{
  double d = ei_abs(this->dot(other));
  if (d>=1.0)
    return 0;
  return Scalar(2) * std::acos(d);
}

/** \returns the spherical linear interpolation between the two quaternions
  * \c *this and \a other at the parameter \a t
  */
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
  static const Scalar one = Scalar(1) - precision<Scalar>();
  Scalar d = this->dot(other);
  Scalar absD = ei_abs(d);
  if (absD>=one)
    return *this;

  // theta is the angle between the 2 quaternions
  Scalar theta = std::acos(absD);
  Scalar sinTheta = ei_sin(theta);

  Scalar scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
  Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
  if (d<0)
    scale1 = -scale1;

  return Quaternion(scale0 * m_coeffs + scale1 * other.m_coeffs);
}

// set from a rotation matrix
template<typename Other>
struct ei_quaternion_assign_impl<Other,3,3>
{
  typedef typename Other::Scalar Scalar;
  inline static void run(Quaternion<Scalar>& q, const Other& mat)
  {
    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
    // Ken Shoemake, 1987 SIGGRAPH course notes
    Scalar t = mat.trace();
    if (t > 0)
    {
      t = ei_sqrt(t + Scalar(1.0));
      q.w() = Scalar(0.5)*t;
      t = Scalar(0.5)/t;
      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
    }
    else
    {
      int i = 0;
      if (mat.coeff(1,1) > mat.coeff(0,0))
        i = 1;
      if (mat.coeff(2,2) > mat.coeff(i,i))
        i = 2;
      int j = (i+1)%3;
      int k = (j+1)%3;

      t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
      t = Scalar(0.5)/t;
      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
    }
  }
};

// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct ei_quaternion_assign_impl<Other,4,1>
{
  typedef typename Other::Scalar Scalar;
  inline static void run(Quaternion<Scalar>& q, const Other& vec)
  {
    q.coeffs() = vec;
  }
};

#endif // EIGEN_QUATERNION_H