aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Geometry/AngleAxis.h
blob: 2b0ee6196198deb2158fece3f69366f5d2832c0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H

/** \class AngleAxis
  *
  * \brief Represents a rotation in a 3 dimensional space as a rotation angle around a 3D axis
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients.
  *
  * \sa class Quaternion, class EulerAngles, class Transform
  */
template<typename _Scalar>
class AngleAxis
{
public:
  enum { Dim = 3 };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;
  typedef EulerAngles<Scalar> EulerAnglesType;

protected:

  Vector3 m_axis;
  Scalar m_angle;

public:

  AngleAxis() {}
  template<typename Derived>
  inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
  inline AngleAxis(const QuaternionType& q) { *this = q; }
  inline AngleAxis(const EulerAnglesType& ea) { *this = ea; }
  template<typename Derived>
  inline AngleAxis(const MatrixBase<Derived>& m) { *this = m; }

  Scalar angle() const { return m_angle; }
  Scalar& angle() { return m_angle; }

  const Vector3& axis() const { return m_axis; }
  Vector3& axis() { return m_axis; }

  AngleAxis& operator=(const QuaternionType& q);
  AngleAxis& operator=(const EulerAnglesType& ea);
  template<typename Derived>
  AngleAxis& operator=(const MatrixBase<Derived>& m);

  template<typename Derived>
  AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
  Matrix3 toRotationMatrix(void) const;
};

/** Set \c *this from a quaternion.
  * The axis is normalized.
  */
template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
{
  Scalar n2 = q.vec().norm2();
  if (ei_isMuchSmallerThan(n2,Scalar(1)))
  {
    m_angle = 0;
    m_axis << 1, 0, 0;
  }
  else
  {
    m_angle = 2*std::acos(q.w());
    m_axis = q.vec() / ei_sqrt(n2);
  }
  return *this;
}

/** Set \c *this from Euler angles \a ea.
  */
template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const EulerAnglesType& ea)
{
  return *this = QuaternionType(ea);
}

/** Set \c *this from a 3x3 rotation matrix \a mat.
  */
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
  // Since a direct conversion would not be really faster,
  // let's use the robust Quaternion implementation:
  return *this = QuaternionType(mat);
}

/** Constructs and \returns an equivalent 3x3 rotation matrix.
  */
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
AngleAxis<Scalar>::toRotationMatrix(void) const
{
  Matrix3 res;
  Vector3 sin_axis  = ei_sin(m_angle) * m_axis;
  Scalar c = ei_cos(m_angle);
  Vector3 cos1_axis = (Scalar(1)-c) * m_axis;

  Scalar tmp;
  tmp = cos1_axis.x() * m_axis.y();
  res.coeffRef(0,1) = tmp - sin_axis.z();
  res.coeffRef(1,0) = tmp + sin_axis.z();

  tmp = cos1_axis.x() * m_axis.z();
  res.coeffRef(0,2) = tmp + sin_axis.y();
  res.coeffRef(2,0) = tmp - sin_axis.y();

  tmp = cos1_axis.y() * m_axis.z();
  res.coeffRef(1,2) = tmp - sin_axis.x();
  res.coeffRef(2,1) = tmp + sin_axis.x();

  res.diagonal() = Vector3::constant(c) + cos1_axis.cwiseProduct(m_axis);

  return res;
}

#endif // EIGEN_ANGLEAXIS_H