aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Geometry/AlignedBox.h
blob: 003ceaad11f878fc8ebf86fff47a3d1adf454383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H

/** \geometry_module \ingroup Geometry_Module
  * \nonstableyet
  *
  * \class AlignedBox
  *
  * \brief An axis aligned box
  *
  * \param _Scalar the type of the scalar coefficients
  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *
  * This class represents an axis aligned box as a pair of the minimal and maximal corners.
  */
template <typename _Scalar, int _AmbientDim>
class AlignedBox
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
  enum { AmbientDimAtCompileTime = _AmbientDim };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;

  /** Default constructor initializing a null box. */
  inline explicit AlignedBox()
  { if (AmbientDimAtCompileTime!=Dynamic) setNull(); }

  /** Constructs a null box with \a _dim the dimension of the ambient space. */
  inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
  { setNull(); }

  /** Constructs a box with extremities \a _min and \a _max. */
  inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}

  /** Constructs a box containing a single point \a p. */
  inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}

  ~AlignedBox() {}

  /** \returns the dimension in which the box holds */
  inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }

  /** \returns true if the box is null, i.e, empty. */
  inline bool isNull() const { return (m_min.array() > m_max).any(); }

  /** Makes \c *this a null/empty box. */
  inline void setNull()
  {
    m_min.setConstant( std::numeric_limits<Scalar>::max());
    m_max.setConstant(-std::numeric_limits<Scalar>::max());
  }

  /** \returns the minimal corner */
  inline const VectorType& min() const { return m_min; }
  /** \returns a non const reference to the minimal corner */
  inline VectorType& min() { return m_min; }
  /** \returns the maximal corner */
  inline const VectorType& max() const { return m_max; }
  /** \returns a non const reference to the maximal corner */
  inline VectorType& max() { return m_max; }

  /** \returns the center of the box */
  inline VectorType center() const { return (m_min + m_max) / 2; }

  /** \returns true if the point \a p is inside the box \c *this. */
  inline bool contains(const VectorType& p) const
  { return (m_min.array()<=p).all() && (p.array()<=m_max).all(); }

  /** \returns true if the box \a b is entirely inside the box \c *this. */
  inline bool contains(const AlignedBox& b) const
  { return (m_min.array()<=b.min()).all() && (b.max().array()<=m_max).all(); }

  /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
  inline AlignedBox& extend(const VectorType& p)
  { m_min = m_min.cwiseMin(p); m_max = m_max.cwiseMax(p); return *this; }

  /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
  inline AlignedBox& extend(const AlignedBox& b)
  { m_min = m_min.cwiseMin(b.m_min); m_max = m_max.cwiseMax(b.m_max); return *this; }

  /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
  inline AlignedBox& clamp(const AlignedBox& b)
  { m_min = m_min.cwiseMax(b.m_min); m_max = m_max.cwiseMin(b.m_max); return *this; }

  /** Returns an AlignedBox that is the intersection of \a b and \c *this */
  inline AlignedBox intersection(const AlignedBox &b) const
  { return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }

  /** Returns an AlignedBox that is the union of \a b and \c *this */
  inline AlignedBox merged(const AlignedBox &b) const
  { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }

  /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
  inline AlignedBox& translate(const VectorType& t)
  { m_min += t; m_max += t; return *this; }

  /** \returns the squared distance between the point \a p and the box \c *this,
    * and zero if \a p is inside the box.
    * \sa exteriorDistance()
    */
  inline Scalar squaredExteriorDistance(const VectorType& p) const;

  /** \returns the squared distance between the boxes \a b and \c *this,
    * and zero if the boxes intersect.
    * \sa exteriorDistance()
    */
  inline Scalar squaredExteriorDistance(const AlignedBox& b) const;

  /** \returns the distance between the point \a p and the box \c *this,
    * and zero if \a p is inside the box.
    * \sa squaredExteriorDistance()
    */
  inline Scalar exteriorDistance(const VectorType& p) const
  { return ei_sqrt(squaredExteriorDistance(p)); }

  /** \returns the distance between the boxes \a b and \c *this,
    * and zero if the boxes intersect.
    * \sa squaredExteriorDistance()
    */
  inline Scalar exteriorDistance(const AlignedBox& b) const
  { return ei_sqrt(squaredExteriorDistance(b)); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename ei_cast_return_type<AlignedBox,
           AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
  {
    return typename ei_cast_return_type<AlignedBox,
                    AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
  {
    m_min = other.min().template cast<Scalar>();
    m_max = other.max().template cast<Scalar>();
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }

protected:

  VectorType m_min, m_max;
};

template<typename Scalar,int AmbiantDim>
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
{
  Scalar dist2 = 0.;
  Scalar aux;
  for (int k=0; k<dim(); ++k)
  {
    if ((aux = (p[k]-m_min[k]))<0.)
      dist2 += aux*aux;
    else if ( (aux = (m_max[k]-p[k]))<0. )
      dist2 += aux*aux;
  }
  return dist2;
}

template<typename Scalar,int AmbiantDim>
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const AlignedBox& b) const
{
  Scalar dist2 = 0.;
  Scalar aux;
  for (int k=0; k<dim(); ++k)
  {
    if ((aux = (b.m_min[k]-m_max[k]))>0.)
      dist2 += aux*aux;
    else if ( (aux = (m_min[k]-b.m_max[k]))>0. )
      dist2 += aux*aux;
  }
  return dist2;
}

#endif // EIGEN_ALIGNEDBOX_H