aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/Tridiagonalization.h
blob: 6c8084f76a60283c4576165a901785ed58a911e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRIDIAGONALIZATION_H
#define EIGEN_TRIDIAGONALIZATION_H

namespace Eigen {

namespace internal {

template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
template<typename MatrixType>
struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
  : public traits<typename MatrixType::PlainObject>
{
  typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
  enum { Flags = 0 };
};

template<typename MatrixType, typename CoeffVectorType>
EIGEN_DEVICE_FUNC
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
}

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class Tridiagonalization
  *
  * \brief Tridiagonal decomposition of a selfadjoint matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * tridiagonal decomposition; this is expected to be an instantiation of the
  * Matrix class template.
  *
  * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
  * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
  *
  * A tridiagonal matrix is a matrix which has nonzero elements only on the
  * main diagonal and the first diagonal below and above it. The Hessenberg
  * decomposition of a selfadjoint matrix is in fact a tridiagonal
  * decomposition. This class is used in SelfAdjointEigenSolver to compute the
  * eigenvalues and eigenvectors of a selfadjoint matrix.
  *
  * Call the function compute() to compute the tridiagonal decomposition of a
  * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
  * constructor which computes the tridiagonal Schur decomposition at
  * construction time. Once the decomposition is computed, you can use the
  * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
  * decomposition.
  *
  * The documentation of Tridiagonalization(const MatrixType&) contains an
  * example of the typical use of this class.
  *
  * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class Tridiagonalization
{
  public:

    /** \brief Synonym for the template parameter \p _MatrixType. */
    typedef _MatrixType MatrixType;

    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3

    enum {
      Size = MatrixType::RowsAtCompileTime,
      SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
      Options = MatrixType::Options,
      MaxSize = MatrixType::MaxRowsAtCompileTime,
      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
    };

    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
    typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
    typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
    typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;

    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
              typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
              const Diagonal<const MatrixType>
            >::type DiagonalReturnType;

    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
              typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
              const Diagonal<const MatrixType, -1>
            >::type SubDiagonalReturnType;

    /** \brief Return type of matrixQ() */
    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;

    /** \brief Default constructor.
      *
      * \param [in]  size  Positive integer, size of the matrix whose tridiagonal
      * decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute().  The \p size parameter is only
      * used as a hint. It is not an error to give a wrong \p size, but it may
      * impair performance.
      *
      * \sa compute() for an example.
      */
    explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
      : m_matrix(size,size),
        m_hCoeffs(size > 1 ? size-1 : 1),
        m_isInitialized(false)
    {}

    /** \brief Constructor; computes tridiagonal decomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
      * is to be computed.
      *
      * This constructor calls compute() to compute the tridiagonal decomposition.
      *
      * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
      * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
      */
    template<typename InputType>
    explicit Tridiagonalization(const EigenBase<InputType>& matrix)
      : m_matrix(matrix.derived()),
        m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
        m_isInitialized(false)
    {
      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
      m_isInitialized = true;
    }

    /** \brief Computes tridiagonal decomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
      * is to be computed.
      * \returns    Reference to \c *this
      *
      * The tridiagonal decomposition is computed by bringing the columns of
      * the matrix successively in the required form using Householder
      * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
      * the size of the given matrix.
      *
      * This method reuses of the allocated data in the Tridiagonalization
      * object, if the size of the matrix does not change.
      *
      * Example: \include Tridiagonalization_compute.cpp
      * Output: \verbinclude Tridiagonalization_compute.out
      */
    template<typename InputType>
    Tridiagonalization& compute(const EigenBase<InputType>& matrix)
    {
      m_matrix = matrix.derived();
      m_hCoeffs.resize(matrix.rows()-1, 1);
      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
      m_isInitialized = true;
      return *this;
    }

    /** \brief Returns the Householder coefficients.
      *
      * \returns a const reference to the vector of Householder coefficients
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * The Householder coefficients allow the reconstruction of the matrix
      * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
      *
      * Example: \include Tridiagonalization_householderCoefficients.cpp
      * Output: \verbinclude Tridiagonalization_householderCoefficients.out
      *
      * \sa packedMatrix(), \ref Householder_Module "Householder module"
      */
    inline CoeffVectorType householderCoefficients() const
    {
      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
      return m_hCoeffs;
    }

    /** \brief Returns the internal representation of the decomposition
      *
      *	\returns a const reference to a matrix with the internal representation
      *	         of the decomposition.
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * The returned matrix contains the following information:
      *  - the strict upper triangular part is equal to the input matrix A.
      *  - the diagonal and lower sub-diagonal represent the real tridiagonal
      *    symmetric matrix T.
      *  - the rest of the lower part contains the Householder vectors that,
      *    combined with Householder coefficients returned by
      *    householderCoefficients(), allows to reconstruct the matrix Q as
      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
      *    \f$ v_i \f$ is the Householder vector defined by
      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
      *    with M the matrix returned by this function.
      *
      * See LAPACK for further details on this packed storage.
      *
      * Example: \include Tridiagonalization_packedMatrix.cpp
      * Output: \verbinclude Tridiagonalization_packedMatrix.out
      *
      * \sa householderCoefficients()
      */
    inline const MatrixType& packedMatrix() const
    {
      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
      return m_matrix;
    }

    /** \brief Returns the unitary matrix Q in the decomposition
      *
      * \returns object representing the matrix Q
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * This function returns a light-weight object of template class
      * HouseholderSequence. You can either apply it directly to a matrix or
      * you can convert it to a matrix of type #MatrixType.
      *
      * \sa Tridiagonalization(const MatrixType&) for an example,
      *     matrixT(), class HouseholderSequence
      */
    HouseholderSequenceType matrixQ() const
    {
      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
             .setLength(m_matrix.rows() - 1)
             .setShift(1);
    }

    /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
      *
      * \returns expression object representing the matrix T
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * Currently, this function can be used to extract the matrix T from internal
      * data and copy it to a dense matrix object. In most cases, it may be
      * sufficient to directly use the packed matrix or the vector expressions
      * returned by diagonal() and subDiagonal() instead of creating a new
      * dense copy matrix with this function.
      *
      * \sa Tridiagonalization(const MatrixType&) for an example,
      * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
      */
    MatrixTReturnType matrixT() const
    {
      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
      return MatrixTReturnType(m_matrix.real());
    }

    /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
      *
      * \returns expression representing the diagonal of T
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * Example: \include Tridiagonalization_diagonal.cpp
      * Output: \verbinclude Tridiagonalization_diagonal.out
      *
      * \sa matrixT(), subDiagonal()
      */
    DiagonalReturnType diagonal() const;

    /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
      *
      * \returns expression representing the subdiagonal of T
      *
      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
      * the member function compute(const MatrixType&) has been called before
      * to compute the tridiagonal decomposition of a matrix.
      *
      * \sa diagonal() for an example, matrixT()
      */
    SubDiagonalReturnType subDiagonal() const;

  protected:

    MatrixType m_matrix;
    CoeffVectorType m_hCoeffs;
    bool m_isInitialized;
};

template<typename MatrixType>
typename Tridiagonalization<MatrixType>::DiagonalReturnType
Tridiagonalization<MatrixType>::diagonal() const
{
  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
  return m_matrix.diagonal().real();
}

template<typename MatrixType>
typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
Tridiagonalization<MatrixType>::subDiagonal() const
{
  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
  return m_matrix.template diagonal<-1>().real();
}

namespace internal {

/** \internal
  * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
  *
  * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
  *                     On output, the strict upper part is left unchanged, and the lower triangular part
  *                     represents the T and Q matrices in packed format has detailed below.
  * \param[out]    hCoeffs returned Householder coefficients (see below)
  *
  * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
  * and lower sub-diagonal of the matrix \a matA.
  * The unitary matrix Q is represented in a compact way as a product of
  * Householder reflectors \f$ H_i \f$ such that:
  *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
  * The Householder reflectors are defined as
  *       \f$ H_i = (I - h_i v_i v_i^T) \f$
  * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
  * \f$ v_i \f$ is the Householder vector defined by
  *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
  *
  * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
  *
  * \sa Tridiagonalization::packedMatrix()
  */
template<typename MatrixType, typename CoeffVectorType>
EIGEN_DEVICE_FUNC
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
{
  using numext::conj;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  Index n = matA.rows();
  eigen_assert(n==matA.cols());
  eigen_assert(n==hCoeffs.size()+1 || n==1);

  for (Index i = 0; i<n-1; ++i)
  {
    Index remainingSize = n-i-1;
    RealScalar beta;
    Scalar h;
    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);

    // Apply similarity transformation to remaining columns,
    // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
    matA.col(i).coeffRef(i+1) = 1;

    hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
                                  * (conj(h) * matA.col(i).tail(remainingSize)));

    hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);

    matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
      .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));

    matA.col(i).coeffRef(i+1) = beta;
    hCoeffs.coeffRef(i) = h;
  }
}

// forward declaration, implementation at the end of this file
template<typename MatrixType,
         int Size=MatrixType::ColsAtCompileTime,
         bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
struct tridiagonalization_inplace_selector;

/** \brief Performs a full tridiagonalization in place
  *
  * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal
  *    decomposition is to be computed. Only the lower triangular part referenced.
  *    The rest is left unchanged. On output, the orthogonal matrix Q
  *    in the decomposition if \p extractQ is true.
  * \param[out]  diag  The diagonal of the tridiagonal matrix T in the
  *    decomposition.
  * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in
  *    the decomposition.
  * \param[in]  extractQ  If true, the orthogonal matrix Q in the
  *    decomposition is computed and stored in \p mat.
  *
  * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
  * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
  * symmetric tridiagonal matrix.
  *
  * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
  * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
  * part of the matrix \p mat is destroyed.
  *
  * The vectors \p diag and \p subdiag are not resized. The function
  * assumes that they are already of the correct size. The length of the
  * vector \p diag should equal the number of rows in \p mat, and the
  * length of the vector \p subdiag should be one left.
  *
  * This implementation contains an optimized path for 3-by-3 matrices
  * which is especially useful for plane fitting.
  *
  * \note Currently, it requires two temporary vectors to hold the intermediate
  * Householder coefficients, and to reconstruct the matrix Q from the Householder
  * reflectors.
  *
  * Example (this uses the same matrix as the example in
  *    Tridiagonalization::Tridiagonalization(const MatrixType&)):
  *    \include Tridiagonalization_decomposeInPlace.cpp
  * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
  *
  * \sa class Tridiagonalization
  */
template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
EIGEN_DEVICE_FUNC
void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
  eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
  tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
}

/** \internal
  * General full tridiagonalization
  */
template<typename MatrixType, int Size, bool IsComplex>
struct tridiagonalization_inplace_selector
{
  typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
  typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
  template<typename DiagonalType, typename SubDiagonalType>
  static EIGEN_DEVICE_FUNC
  void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
  {
    CoeffVectorType hCoeffs(mat.cols()-1);
    tridiagonalization_inplace(mat,hCoeffs);
    diag = mat.diagonal().real();
    subdiag = mat.template diagonal<-1>().real();
    if(extractQ)
      mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
            .setLength(mat.rows() - 1)
            .setShift(1);
  }
};

/** \internal
  * Specialization for 3x3 real matrices.
  * Especially useful for plane fitting.
  */
template<typename MatrixType>
struct tridiagonalization_inplace_selector<MatrixType,3,false>
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;

  template<typename DiagonalType, typename SubDiagonalType>
  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
  {
    using std::sqrt;
    const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
    diag[0] = mat(0,0);
    RealScalar v1norm2 = numext::abs2(mat(2,0));
    if(v1norm2 <= tol)
    {
      diag[1] = mat(1,1);
      diag[2] = mat(2,2);
      subdiag[0] = mat(1,0);
      subdiag[1] = mat(2,1);
      if (extractQ)
        mat.setIdentity();
    }
    else
    {
      RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
      RealScalar invBeta = RealScalar(1)/beta;
      Scalar m01 = mat(1,0) * invBeta;
      Scalar m02 = mat(2,0) * invBeta;
      Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
      diag[1] = mat(1,1) + m02*q;
      diag[2] = mat(2,2) - m02*q;
      subdiag[0] = beta;
      subdiag[1] = mat(2,1) - m01 * q;
      if (extractQ)
      {
        mat << 1,   0,    0,
               0, m01,  m02,
               0, m02, -m01;
      }
    }
  }
};

/** \internal
  * Trivial specialization for 1x1 matrices
  */
template<typename MatrixType, bool IsComplex>
struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
{
  typedef typename MatrixType::Scalar Scalar;

  template<typename DiagonalType, typename SubDiagonalType>
  static EIGEN_DEVICE_FUNC
  void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
  {
    diag(0,0) = numext::real(mat(0,0));
    if(extractQ)
      mat(0,0) = Scalar(1);
  }
};

/** \internal
  * \eigenvalues_module \ingroup Eigenvalues_Module
  *
  * \brief Expression type for return value of Tridiagonalization::matrixT()
  *
  * \tparam MatrixType type of underlying dense matrix
  */
template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
{
  public:
    /** \brief Constructor.
      *
      * \param[in] mat The underlying dense matrix
      */
    TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }

    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      result.setZero();
      result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
      result.diagonal() = m_matrix.diagonal();
      result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
    }

    EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
    EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }

  protected:
    typename MatrixType::Nested m_matrix;
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_TRIDIAGONALIZATION_H