aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
blob: 59e59644eb370813b0e996ca6a6ca949897d16e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
#define EIGEN_SELFADJOINTEIGENSOLVER_H

#include "./Tridiagonalization.h"

namespace Eigen { 

template<typename _MatrixType>
class GeneralizedSelfAdjointEigenSolver;

namespace internal {
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;

template<typename MatrixType, typename DiagType, typename SubDiagType>
EIGEN_DEVICE_FUNC
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
}

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class SelfAdjointEigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * eigendecomposition; this is expected to be an instantiation of the Matrix
  * class template.
  *
  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
  * matrices, this means that the matrix is symmetric: it equals its
  * transpose. This class computes the eigenvalues and eigenvectors of a
  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
  * eigendecomposition.
  *
  * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
  * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
  * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
  * equal to its transpose, \f$ V^{-1} = V^T \f$.
  *
  * The algorithm exploits the fact that the matrix is selfadjoint, making it
  * faster and more accurate than the general purpose eigenvalue algorithms
  * implemented in EigenSolver and ComplexEigenSolver.
  *
  * Only the \b lower \b triangular \b part of the input matrix is referenced.
  *
  * Call the function compute() to compute the eigenvalues and eigenvectors of
  * a given matrix. Alternatively, you can use the
  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
  * and eigenvectors are computed, they can be retrieved with the eigenvalues()
  * and eigenvectors() functions.
  *
  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
  * contains an example of the typical use of this class.
  *
  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
  * the likes, see the class GeneralizedSelfAdjointEigenSolver.
  *
  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class SelfAdjointEigenSolver
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      Size = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    
    /** \brief Scalar type for matrices of type \p _MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
    
    typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;

    /** \brief Real scalar type for \p _MatrixType.
      *
      * This is just \c Scalar if #Scalar is real (e.g., \c float or
      * \c double), and the type of the real part of \c Scalar if #Scalar is
      * complex.
      */
    typedef typename NumTraits<Scalar>::Real RealScalar;
    
    friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;

    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
      *
      * This is a column vector with entries of type #RealScalar.
      * The length of the vector is the size of \p _MatrixType.
      */
    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
    typedef Tridiagonalization<MatrixType> TridiagonalizationType;
    typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;

    /** \brief Default constructor for fixed-size matrices.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute(). This constructor
      * can only be used if \p _MatrixType is a fixed-size matrix; use
      * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
      *
      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
      */
    EIGEN_DEVICE_FUNC
    SelfAdjointEigenSolver()
        : m_eivec(),
          m_eivalues(),
          m_subdiag(),
          m_info(InvalidInput),
          m_isInitialized(false),
          m_eigenvectorsOk(false)
    { }

    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
      *
      * \param [in]  size  Positive integer, size of the matrix whose
      * eigenvalues and eigenvectors will be computed.
      *
      * This constructor is useful for dynamic-size matrices, when the user
      * intends to perform decompositions via compute(). The \p size
      * parameter is only used as a hint. It is not an error to give a wrong
      * \p size, but it may impair performance.
      *
      * \sa compute() for an example
      */
    EIGEN_DEVICE_FUNC
    explicit SelfAdjointEigenSolver(Index size)
        : m_eivec(size, size),
          m_eivalues(size),
          m_subdiag(size > 1 ? size - 1 : 1),
          m_isInitialized(false),
          m_eigenvectorsOk(false)
    {}

    /** \brief Constructor; computes eigendecomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
      *    be computed. Only the lower triangular part of the matrix is referenced.
      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
      *
      * This constructor calls compute(const MatrixType&, int) to compute the
      * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
      * \p options equals #ComputeEigenvectors.
      *
      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
      *
      * \sa compute(const MatrixType&, int)
      */
    template<typename InputType>
    EIGEN_DEVICE_FUNC
    explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
        m_isInitialized(false),
        m_eigenvectorsOk(false)
    {
      compute(matrix.derived(), options);
    }

    /** \brief Computes eigendecomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
      *    be computed. Only the lower triangular part of the matrix is referenced.
      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
      * \returns    Reference to \c *this
      *
      * This function computes the eigenvalues of \p matrix.  The eigenvalues()
      * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
      * then the eigenvectors are also computed and can be retrieved by
      * calling eigenvectors().
      *
      * This implementation uses a symmetric QR algorithm. The matrix is first
      * reduced to tridiagonal form using the Tridiagonalization class. The
      * tridiagonal matrix is then brought to diagonal form with implicit
      * symmetric QR steps with Wilkinson shift. Details can be found in
      * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
      *
      * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
      * are required and \f$ 4n^3/3 \f$ if they are not required.
      *
      * This method reuses the memory in the SelfAdjointEigenSolver object that
      * was allocated when the object was constructed, if the size of the
      * matrix does not change.
      *
      * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
      *
      * \sa SelfAdjointEigenSolver(const MatrixType&, int)
      */
    template<typename InputType>
    EIGEN_DEVICE_FUNC
    SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
    
    /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
      *
      * This is a variant of compute(const MatrixType&, int options) which
      * directly solves the underlying polynomial equation.
      * 
      * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
      * 
      * This method is usually significantly faster than the QR iterative algorithm
      * but it might also be less accurate. It is also worth noting that
      * for 3x3 matrices it involves trigonometric operations which are
      * not necessarily available for all scalar types.
      * 
      * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
      *   - double: 1e-8
      *   - float:  1e-3
      *
      * \sa compute(const MatrixType&, int options)
      */
    EIGEN_DEVICE_FUNC
    SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);

    /**
      *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
      *
      * \param[in] diag The vector containing the diagonal of the matrix.
      * \param[in] subdiag The subdiagonal of the matrix.
      * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
      * \returns Reference to \c *this
      *
      * This function assumes that the matrix has been reduced to tridiagonal form.
      *
      * \sa compute(const MatrixType&, int) for more information
      */
    SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);

    /** \brief Returns the eigenvectors of given matrix.
      *
      * \returns  A const reference to the matrix whose columns are the eigenvectors.
      *
      * \pre The eigenvectors have been computed before.
      *
      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
      * eigenvectors are normalized to have (Euclidean) norm equal to one. If
      * this object was used to solve the eigenproblem for the selfadjoint
      * matrix \f$ A \f$, then the matrix returned by this function is the
      * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
      *
      * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
      * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
      * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
      * equal to its transpose, \f$ V^{-1} = V^T \f$.
      *
      * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
      *
      * \sa eigenvalues()
      */
    EIGEN_DEVICE_FUNC
    const EigenvectorsType& eigenvectors() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec;
    }

    /** \brief Returns the eigenvalues of given matrix.
      *
      * \returns A const reference to the column vector containing the eigenvalues.
      *
      * \pre The eigenvalues have been computed before.
      *
      * The eigenvalues are repeated according to their algebraic multiplicity,
      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
      * are sorted in increasing order.
      *
      * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
      *
      * \sa eigenvectors(), MatrixBase::eigenvalues()
      */
    EIGEN_DEVICE_FUNC
    const RealVectorType& eigenvalues() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      return m_eivalues;
    }

    /** \brief Computes the positive-definite square root of the matrix.
      *
      * \returns the positive-definite square root of the matrix
      *
      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
      * have been computed before.
      *
      * The square root of a positive-definite matrix \f$ A \f$ is the
      * positive-definite matrix whose square equals \f$ A \f$. This function
      * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
      * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
      *
      * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
      *
      * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
      */
    EIGEN_DEVICE_FUNC
    MatrixType operatorSqrt() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
    }

    /** \brief Computes the inverse square root of the matrix.
      *
      * \returns the inverse positive-definite square root of the matrix
      *
      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
      * have been computed before.
      *
      * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
      * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
      * cheaper than first computing the square root with operatorSqrt() and
      * then its inverse with MatrixBase::inverse().
      *
      * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
      *
      * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
      */
    EIGEN_DEVICE_FUNC
    MatrixType operatorInverseSqrt() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
    }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was successful, \c NoConvergence otherwise.
      */
    EIGEN_DEVICE_FUNC
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      return m_info;
    }

    /** \brief Maximum number of iterations.
      *
      * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
      * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
      */
    static const int m_maxIterations = 30;

  protected:
    static EIGEN_DEVICE_FUNC
    void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
    
    EigenvectorsType m_eivec;
    RealVectorType m_eivalues;
    typename TridiagonalizationType::SubDiagonalType m_subdiag;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_eigenvectorsOk;
};

namespace internal {
/** \internal
  *
  * \eigenvalues_module \ingroup Eigenvalues_Module
  *
  * Performs a QR step on a tridiagonal symmetric matrix represented as a
  * pair of two vectors \a diag and \a subdiag.
  *
  * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
  * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
  * \param start starting index of the submatrix to work on
  * \param end last+1 index of the submatrix to work on
  * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
  * \param n size of the input matrix
  *
  * For compilation efficiency reasons, this procedure does not use eigen expression
  * for its arguments.
  *
  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
  * "implicit symmetric QR step with Wilkinson shift"
  */
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
}

template<typename MatrixType>
template<typename InputType>
EIGEN_DEVICE_FUNC
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::compute(const EigenBase<InputType>& a_matrix, int options)
{
  check_template_parameters();
  
  const InputType &matrix(a_matrix.derived());
  
  EIGEN_USING_STD(abs);
  eigen_assert(matrix.cols() == matrix.rows());
  eigen_assert((options&~(EigVecMask|GenEigMask))==0
          && (options&EigVecMask)!=EigVecMask
          && "invalid option parameter");
  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
  Index n = matrix.cols();
  m_eivalues.resize(n,1);

  if(n==1)
  {
    m_eivec = matrix;
    m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
    if(computeEigenvectors)
      m_eivec.setOnes(n,n);
    m_info = Success;
    m_isInitialized = true;
    m_eigenvectorsOk = computeEigenvectors;
    return *this;
  }

  // declare some aliases
  RealVectorType& diag = m_eivalues;
  EigenvectorsType& mat = m_eivec;

  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
  mat = matrix.template triangularView<Lower>();
  RealScalar scale = mat.cwiseAbs().maxCoeff();
  if(scale==RealScalar(0)) scale = RealScalar(1);
  mat.template triangularView<Lower>() /= scale;
  m_subdiag.resize(n-1);
  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);

  m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
  
  // scale back the eigen values
  m_eivalues *= scale;

  m_isInitialized = true;
  m_eigenvectorsOk = computeEigenvectors;
  return *this;
}

template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
{
  //TODO : Add an option to scale the values beforehand
  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;

  m_eivalues = diag;
  m_subdiag = subdiag;
  if (computeEigenvectors)
  {
    m_eivec.setIdentity(diag.size(), diag.size());
  }
  m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);

  m_isInitialized = true;
  m_eigenvectorsOk = computeEigenvectors;
  return *this;
}

namespace internal {
/**
  * \internal
  * \brief Compute the eigendecomposition from a tridiagonal matrix
  *
  * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
  * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
  * \param[in] maxIterations : the maximum number of iterations
  * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
  * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
  * \returns \c Success or \c NoConvergence
  */
template<typename MatrixType, typename DiagType, typename SubDiagType>
EIGEN_DEVICE_FUNC
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
{
  ComputationInfo info;
  typedef typename MatrixType::Scalar Scalar;

  Index n = diag.size();
  Index end = n-1;
  Index start = 0;
  Index iter = 0; // total number of iterations
  
  typedef typename DiagType::RealScalar RealScalar;
  const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
  const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
  while (end>0)
  {
    for (Index i = start; i<end; ++i) {
      if (numext::abs(subdiag[i]) < considerAsZero) {
        subdiag[i] = RealScalar(0);
      } else {
        // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
        // Scaled to prevent underflows.
        const RealScalar scaled_subdiag = precision_inv * subdiag[i];
        if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
          subdiag[i] = RealScalar(0);
        }
      }
    }

    // find the largest unreduced block at the end of the matrix.
    while (end>0 && subdiag[end-1]==RealScalar(0))
    {
      end--;
    }
    if (end<=0)
      break;

    // if we spent too many iterations, we give up
    iter++;
    if(iter > maxIterations * n) break;

    start = end - 1;
    while (start>0 && subdiag[start-1]!=0)
      start--;

    internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
  }
  if (iter <= maxIterations * n)
    info = Success;
  else
    info = NoConvergence;

  // Sort eigenvalues and corresponding vectors.
  // TODO make the sort optional ?
  // TODO use a better sort algorithm !!
  if (info == Success)
  {
    for (Index i = 0; i < n-1; ++i)
    {
      Index k;
      diag.segment(i,n-i).minCoeff(&k);
      if (k > 0)
      {
        numext::swap(diag[i], diag[k+i]);
        if(computeEigenvectors)
          eivec.col(i).swap(eivec.col(k+i));
      }
    }
  }
  return info;
}
  
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
{
  EIGEN_DEVICE_FUNC
  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
  { eig.compute(A,options); }
};

template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
{
  typedef typename SolverType::MatrixType MatrixType;
  typedef typename SolverType::RealVectorType VectorType;
  typedef typename SolverType::Scalar Scalar;
  typedef typename SolverType::EigenvectorsType EigenvectorsType;
  

  /** \internal
   * Computes the roots of the characteristic polynomial of \a m.
   * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
   */
  EIGEN_DEVICE_FUNC
  static inline void computeRoots(const MatrixType& m, VectorType& roots)
  {
    EIGEN_USING_STD(sqrt)
    EIGEN_USING_STD(atan2)
    EIGEN_USING_STD(cos)
    EIGEN_USING_STD(sin)
    const Scalar s_inv3 = Scalar(1)/Scalar(3);
    const Scalar s_sqrt3 = sqrt(Scalar(3));

    // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
    // eigenvalues are the roots to this equation, all guaranteed to be
    // real-valued, because the matrix is symmetric.
    Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
    Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
    Scalar c2 = m(0,0) + m(1,1) + m(2,2);

    // Construct the parameters used in classifying the roots of the equation
    // and in solving the equation for the roots in closed form.
    Scalar c2_over_3 = c2*s_inv3;
    Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
    a_over_3 = numext::maxi(a_over_3, Scalar(0));

    Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));

    Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
    q = numext::maxi(q, Scalar(0));

    // Compute the eigenvalues by solving for the roots of the polynomial.
    Scalar rho = sqrt(a_over_3);
    Scalar theta = atan2(sqrt(q),half_b)*s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
    Scalar cos_theta = cos(theta);
    Scalar sin_theta = sin(theta);
    // roots are already sorted, since cos is monotonically decreasing on [0, pi]
    roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
    roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
    roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
  }

  EIGEN_DEVICE_FUNC
  static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
  {
    EIGEN_USING_STD(abs);
    EIGEN_USING_STD(sqrt);
    Index i0;
    // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
    mat.diagonal().cwiseAbs().maxCoeff(&i0);
    // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
    // so let's save it:
    representative = mat.col(i0);
    Scalar n0, n1;
    VectorType c0, c1;
    n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
    n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
    if(n0>n1) res = c0/sqrt(n0);
    else      res = c1/sqrt(n1);

    return true;
  }

  EIGEN_DEVICE_FUNC
  static inline void run(SolverType& solver, const MatrixType& mat, int options)
  {
    eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
    eigen_assert((options&~(EigVecMask|GenEigMask))==0
            && (options&EigVecMask)!=EigVecMask
            && "invalid option parameter");
    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
    
    EigenvectorsType& eivecs = solver.m_eivec;
    VectorType& eivals = solver.m_eivalues;
  
    // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
    Scalar shift = mat.trace() / Scalar(3);
    // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
    MatrixType scaledMat = mat.template selfadjointView<Lower>();
    scaledMat.diagonal().array() -= shift;
    Scalar scale = scaledMat.cwiseAbs().maxCoeff();
    if(scale > 0) scaledMat /= scale;   // TODO for scale==0 we could save the remaining operations

    // compute the eigenvalues
    computeRoots(scaledMat,eivals);

    // compute the eigenvectors
    if(computeEigenvectors)
    {
      if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
      {
        // All three eigenvalues are numerically the same
        eivecs.setIdentity();
      }
      else
      {
        MatrixType tmp;
        tmp = scaledMat;

        // Compute the eigenvector of the most distinct eigenvalue
        Scalar d0 = eivals(2) - eivals(1);
        Scalar d1 = eivals(1) - eivals(0);
        Index k(0), l(2);
        if(d0 > d1)
        {
          numext::swap(k,l);
          d0 = d1;
        }

        // Compute the eigenvector of index k
        {
          tmp.diagonal().array () -= eivals(k);
          // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
          extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
        }

        // Compute eigenvector of index l
        if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
        {
          // If d0 is too small, then the two other eigenvalues are numerically the same,
          // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
          eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
          eivecs.col(l).normalize();
        }
        else
        {
          tmp = scaledMat;
          tmp.diagonal().array () -= eivals(l);

          VectorType dummy;
          extract_kernel(tmp, eivecs.col(l), dummy);
        }

        // Compute last eigenvector from the other two
        eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
      }
    }

    // Rescale back to the original size.
    eivals *= scale;
    eivals.array() += shift;
    
    solver.m_info = Success;
    solver.m_isInitialized = true;
    solver.m_eigenvectorsOk = computeEigenvectors;
  }
};

// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
template<typename SolverType> 
struct direct_selfadjoint_eigenvalues<SolverType,2,false>
{
  typedef typename SolverType::MatrixType MatrixType;
  typedef typename SolverType::RealVectorType VectorType;
  typedef typename SolverType::Scalar Scalar;
  typedef typename SolverType::EigenvectorsType EigenvectorsType;
  
  EIGEN_DEVICE_FUNC
  static inline void computeRoots(const MatrixType& m, VectorType& roots)
  {
    EIGEN_USING_STD(sqrt);
    const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
    const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
    roots(0) = t1 - t0;
    roots(1) = t1 + t0;
  }
  
  EIGEN_DEVICE_FUNC
  static inline void run(SolverType& solver, const MatrixType& mat, int options)
  {
    EIGEN_USING_STD(sqrt);
    EIGEN_USING_STD(abs);
    
    eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
    eigen_assert((options&~(EigVecMask|GenEigMask))==0
            && (options&EigVecMask)!=EigVecMask
            && "invalid option parameter");
    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
    
    EigenvectorsType& eivecs = solver.m_eivec;
    VectorType& eivals = solver.m_eivalues;
  
    // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
    Scalar shift = mat.trace() / Scalar(2);
    MatrixType scaledMat = mat;
    scaledMat.coeffRef(0,1) = mat.coeff(1,0);
    scaledMat.diagonal().array() -= shift;
    Scalar scale = scaledMat.cwiseAbs().maxCoeff();
    if(scale > Scalar(0))
      scaledMat /= scale;

    // Compute the eigenvalues
    computeRoots(scaledMat,eivals);

    // compute the eigen vectors
    if(computeEigenvectors)
    {
      if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
      {
        eivecs.setIdentity();
      }
      else
      {
        scaledMat.diagonal().array () -= eivals(1);
        Scalar a2 = numext::abs2(scaledMat(0,0));
        Scalar c2 = numext::abs2(scaledMat(1,1));
        Scalar b2 = numext::abs2(scaledMat(1,0));
        if(a2>c2)
        {
          eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
          eivecs.col(1) /= sqrt(a2+b2);
        }
        else
        {
          eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
          eivecs.col(1) /= sqrt(c2+b2);
        }

        eivecs.col(0) << eivecs.col(1).unitOrthogonal();
      }
    }

    // Rescale back to the original size.
    eivals *= scale;
    eivals.array() += shift;

    solver.m_info = Success;
    solver.m_isInitialized = true;
    solver.m_eigenvectorsOk = computeEigenvectors;
  }
};

}

template<typename MatrixType>
EIGEN_DEVICE_FUNC
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::computeDirect(const MatrixType& matrix, int options)
{
  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
  return *this;
}

namespace internal {

// Francis implicit QR step.
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
{
  // Wilkinson Shift.
  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
  RealScalar e = subdiag[end-1];
  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
  // underflow thus leading to inf/NaN values when using the following commented code:
  //   RealScalar e2 = numext::abs2(subdiag[end-1]);
  //   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
  // This explain the following, somewhat more complicated, version:
  RealScalar mu = diag[end];
  if(td==RealScalar(0)) {
    mu -= numext::abs(e);
  } else if (e != RealScalar(0)) {
    const RealScalar e2 = numext::abs2(e);
    const RealScalar h = numext::hypot(td,e);
    if(e2 == RealScalar(0)) {
      mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
    } else {
      mu -= e2 / (td + (td>RealScalar(0) ? h : -h)); 
    }
  }

  RealScalar x = diag[start] - mu;
  RealScalar z = subdiag[start];
  // If z ever becomes zero, the Givens rotation will be the identity and
  // z will stay zero for all future iterations.
  for (Index k = start; k < end && z != RealScalar(0); ++k)
  {
    JacobiRotation<RealScalar> rot;
    rot.makeGivens(x, z);

    // do T = G' T G
    RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
    RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];

    diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
    diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
    subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
    
    if (k > start)
      subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;

    // "Chasing the bulge" to return to triangular form.
    x = subdiag[k];
    if (k < end - 1)
    {
      z = -rot.s() * subdiag[k+1];
      subdiag[k + 1] = rot.c() * subdiag[k+1];
    }
    
    // apply the givens rotation to the unit matrix Q = Q * G
    if (matrixQ)
    {
      // FIXME if StorageOrder == RowMajor this operation is not very efficient
      Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
      q.applyOnTheRight(k,k+1,rot);
    }
  }
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SELFADJOINTEIGENSOLVER_H