aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/RealSchur.h
blob: f5c86041da41bfb4e182a8d050d9ce17f82c9acb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_REAL_SCHUR_H
#define EIGEN_REAL_SCHUR_H

#include "./HessenbergDecomposition.h"

namespace Eigen { 

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class RealSchur
  *
  * \brief Performs a real Schur decomposition of a square matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * real Schur decomposition; this is expected to be an instantiation of the
  * Matrix class template.
  *
  * Given a real square matrix A, this class computes the real Schur
  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
  * blocks on the diagonal of T are the same as the eigenvalues of the matrix
  * A, and thus the real Schur decomposition is used in EigenSolver to compute
  * the eigendecomposition of a matrix.
  *
  * Call the function compute() to compute the real Schur decomposition of a
  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
  * constructor which computes the real Schur decomposition at construction
  * time. Once the decomposition is computed, you can use the matrixU() and
  * matrixT() functions to retrieve the matrices U and T in the decomposition.
  *
  * The documentation of RealSchur(const MatrixType&, bool) contains an example
  * of the typical use of this class.
  *
  * \note The implementation is adapted from
  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
  * Their code is based on EISPACK.
  *
  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class RealSchur
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3

    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;

    /** \brief Default constructor.
      *
      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute().  The \p size parameter is only
      * used as a hint. It is not an error to give a wrong \p size, but it may
      * impair performance.
      *
      * \sa compute() for an example.
      */
    explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
            : m_matT(size, size),
              m_matU(size, size),
              m_workspaceVector(size),
              m_hess(size),
              m_isInitialized(false),
              m_matUisUptodate(false),
              m_maxIters(-1)
    { }

    /** \brief Constructor; computes real Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      *
      * This constructor calls compute() to compute the Schur decomposition.
      *
      * Example: \include RealSchur_RealSchur_MatrixType.cpp
      * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
      */
    template<typename InputType>
    explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
            : m_matT(matrix.rows(),matrix.cols()),
              m_matU(matrix.rows(),matrix.cols()),
              m_workspaceVector(matrix.rows()),
              m_hess(matrix.rows()),
              m_isInitialized(false),
              m_matUisUptodate(false),
              m_maxIters(-1)
    {
      compute(matrix.derived(), computeU);
    }

    /** \brief Returns the orthogonal matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix U.
      *
      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
      * member function compute(const MatrixType&, bool) has been called before
      * to compute the Schur decomposition of a matrix, and \p computeU was set
      * to true (the default value).
      *
      * \sa RealSchur(const MatrixType&, bool) for an example
      */
    const MatrixType& matrixU() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
      return m_matU;
    }

    /** \brief Returns the quasi-triangular matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix T.
      *
      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
      * member function compute(const MatrixType&, bool) has been called before
      * to compute the Schur decomposition of a matrix.
      *
      * \sa RealSchur(const MatrixType&, bool) for an example
      */
    const MatrixType& matrixT() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      return m_matT;
    }
  
    /** \brief Computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      * \returns    Reference to \c *this
      *
      * The Schur decomposition is computed by first reducing the matrix to
      * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
      * matrix is then reduced to triangular form by performing Francis QR
      * iterations with implicit double shift. The cost of computing the Schur
      * decomposition depends on the number of iterations; as a rough guide, it
      * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
      * \f$10n^3\f$ flops if \a computeU is false.
      *
      * Example: \include RealSchur_compute.cpp
      * Output: \verbinclude RealSchur_compute.out
      *
      * \sa compute(const MatrixType&, bool, Index)
      */
    template<typename InputType>
    RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);

    /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
     *  \param[in] matrixH Matrix in Hessenberg form H
     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
     *  \param computeU Computes the matriX U of the Schur vectors
     * \return Reference to \c *this
     * 
     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
     *  using either the class HessenbergDecomposition or another mean. 
     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
     *  When computeU is true, this routine computes the matrix U such that 
     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
     * 
     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
     * is not available, the user should give an identity matrix (Q.setIdentity())
     * 
     * \sa compute(const MatrixType&, bool)
     */
    template<typename HessMatrixType, typename OrthMatrixType>
    RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      return m_info;
    }

    /** \brief Sets the maximum number of iterations allowed. 
      *
      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
      * of the matrix.
      */
    RealSchur& setMaxIterations(Index maxIters)
    {
      m_maxIters = maxIters;
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_maxIters;
    }

    /** \brief Maximum number of iterations per row.
      *
      * If not otherwise specified, the maximum number of iterations is this number times the size of the
      * matrix. It is currently set to 40.
      */
    static const int m_maxIterationsPerRow = 40;

  private:
    
    MatrixType m_matT;
    MatrixType m_matU;
    ColumnVectorType m_workspaceVector;
    HessenbergDecomposition<MatrixType> m_hess;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_matUisUptodate;
    Index m_maxIters;

    typedef Matrix<Scalar,3,1> Vector3s;

    Scalar computeNormOfT();
    Index findSmallSubdiagEntry(Index iu);
    void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
    void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
    void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
    void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
};


template<typename MatrixType>
template<typename InputType>
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
{
  const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();

  eigen_assert(matrix.cols() == matrix.rows());
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * matrix.rows();

  Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
  if(scale<considerAsZero)
  {
    m_matT.setZero(matrix.rows(),matrix.cols());
    if(computeU)
      m_matU.setIdentity(matrix.rows(),matrix.cols());
    m_info = Success;
    m_isInitialized = true;
    m_matUisUptodate = computeU;
    return *this;
  }

  // Step 1. Reduce to Hessenberg form
  m_hess.compute(matrix.derived()/scale);

  // Step 2. Reduce to real Schur form  
  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);

  m_matT *= scale;
  
  return *this;
}
template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
{
  using std::abs;

  m_matT = matrixH;
  if(computeU)
    m_matU = matrixQ;
  
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * matrixH.rows();
  m_workspaceVector.resize(m_matT.cols());
  Scalar* workspace = &m_workspaceVector.coeffRef(0);

  // The matrix m_matT is divided in three parts. 
  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
  // Rows il,...,iu is the part we are working on (the active window).
  // Rows iu+1,...,end are already brought in triangular form.
  Index iu = m_matT.cols() - 1;
  Index iter = 0;      // iteration count for current eigenvalue
  Index totalIter = 0; // iteration count for whole matrix
  Scalar exshift(0);   // sum of exceptional shifts
  Scalar norm = computeNormOfT();

  if(norm!=0)
  {
    while (iu >= 0)
    {
      Index il = findSmallSubdiagEntry(iu);

      // Check for convergence
      if (il == iu) // One root found
      {
        m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
        if (iu > 0)
          m_matT.coeffRef(iu, iu-1) = Scalar(0);
        iu--;
        iter = 0;
      }
      else if (il == iu-1) // Two roots found
      {
        splitOffTwoRows(iu, computeU, exshift);
        iu -= 2;
        iter = 0;
      }
      else // No convergence yet
      {
        // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
        Vector3s firstHouseholderVector(0,0,0), shiftInfo;
        computeShift(iu, iter, exshift, shiftInfo);
        iter = iter + 1;
        totalIter = totalIter + 1;
        if (totalIter > maxIters) break;
        Index im;
        initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
        performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
      }
    }
  }
  if(totalIter <= maxIters)
    m_info = Success;
  else
    m_info = NoConvergence;

  m_isInitialized = true;
  m_matUisUptodate = computeU;
  return *this;
}

/** \internal Computes and returns vector L1 norm of T */
template<typename MatrixType>
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
{
  const Index size = m_matT.cols();
  // FIXME to be efficient the following would requires a triangular reduxion code
  // Scalar norm = m_matT.upper().cwiseAbs().sum() 
  //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
  Scalar norm(0);
  for (Index j = 0; j < size; ++j)
    norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
  return norm;
}

/** \internal Look for single small sub-diagonal element and returns its index */
template<typename MatrixType>
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
{
  using std::abs;
  Index res = iu;
  while (res > 0)
  {
    Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
    if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
      break;
    res--;
  }
  return res;
}

/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
{
  using std::sqrt;
  using std::abs;
  const Index size = m_matT.cols();

  // The eigenvalues of the 2x2 matrix [a b; c d] are 
  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
  m_matT.coeffRef(iu,iu) += exshift;
  m_matT.coeffRef(iu-1,iu-1) += exshift;

  if (q >= Scalar(0)) // Two real eigenvalues
  {
    Scalar z = sqrt(abs(q));
    JacobiRotation<Scalar> rot;
    if (p >= Scalar(0))
      rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
    else
      rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));

    m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
    m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
    m_matT.coeffRef(iu, iu-1) = Scalar(0); 
    if (computeU)
      m_matU.applyOnTheRight(iu-1, iu, rot);
  }

  if (iu > 1) 
    m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
}

/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
{
  using std::sqrt;
  using std::abs;
  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);

  // Wilkinson's original ad hoc shift
  if (iter == 10)
  {
    exshift += shiftInfo.coeff(0);
    for (Index i = 0; i <= iu; ++i)
      m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
    Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
    shiftInfo.coeffRef(0) = Scalar(0.75) * s;
    shiftInfo.coeffRef(1) = Scalar(0.75) * s;
    shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
  }

  // MATLAB's new ad hoc shift
  if (iter == 30)
  {
    Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    s = s * s + shiftInfo.coeff(2);
    if (s > Scalar(0))
    {
      s = sqrt(s);
      if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
        s = -s;
      s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
      s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
      exshift += s;
      for (Index i = 0; i <= iu; ++i)
        m_matT.coeffRef(i,i) -= s;
      shiftInfo.setConstant(Scalar(0.964));
    }
  }
}

/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
{
  using std::abs;
  Vector3s& v = firstHouseholderVector; // alias to save typing

  for (im = iu-2; im >= il; --im)
  {
    const Scalar Tmm = m_matT.coeff(im,im);
    const Scalar r = shiftInfo.coeff(0) - Tmm;
    const Scalar s = shiftInfo.coeff(1) - Tmm;
    v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
    v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
    v.coeffRef(2) = m_matT.coeff(im+2,im+1);
    if (im == il) {
      break;
    }
    const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
    const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
    if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
      break;
  }
}

/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
{
  eigen_assert(im >= il);
  eigen_assert(im <= iu-2);

  const Index size = m_matT.cols();

  for (Index k = im; k <= iu-2; ++k)
  {
    bool firstIteration = (k == im);

    Vector3s v;
    if (firstIteration)
      v = firstHouseholderVector;
    else
      v = m_matT.template block<3,1>(k,k-1);

    Scalar tau, beta;
    Matrix<Scalar, 2, 1> ess;
    v.makeHouseholder(ess, tau, beta);
    
    if (beta != Scalar(0)) // if v is not zero
    {
      if (firstIteration && k > il)
        m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
      else if (!firstIteration)
        m_matT.coeffRef(k,k-1) = beta;

      // These Householder transformations form the O(n^3) part of the algorithm
      m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
      m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
      if (computeU)
        m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    }
  }

  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
  Scalar tau, beta;
  Matrix<Scalar, 1, 1> ess;
  v.makeHouseholder(ess, tau, beta);

  if (beta != Scalar(0)) // if v is not zero
  {
    m_matT.coeffRef(iu-1, iu-2) = beta;
    m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
    m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    if (computeU)
      m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
  }

  // clean up pollution due to round-off errors
  for (Index i = im+2; i <= iu; ++i)
  {
    m_matT.coeffRef(i,i-2) = Scalar(0);
    if (i > im+2)
      m_matT.coeffRef(i,i-3) = Scalar(0);
  }
}

} // end namespace Eigen

#endif // EIGEN_REAL_SCHUR_H