aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/ComplexSchur.h
blob: fc71468f8dfcb9316c5ded0ea2c569094eedf22c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPLEX_SCHUR_H
#define EIGEN_COMPLEX_SCHUR_H

#include "./HessenbergDecomposition.h"

namespace Eigen { 

namespace internal {
template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
}

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class ComplexSchur
  *
  * \brief Performs a complex Schur decomposition of a real or complex square matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are
  * computing the Schur decomposition; this is expected to be an
  * instantiation of the Matrix class template.
  *
  * Given a real or complex square matrix A, this class computes the
  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
  * complex matrix, and T is a complex upper triangular matrix.  The
  * diagonal of the matrix T corresponds to the eigenvalues of the
  * matrix A.
  *
  * Call the function compute() to compute the Schur decomposition of
  * a given matrix. Alternatively, you can use the 
  * ComplexSchur(const MatrixType&, bool) constructor which computes
  * the Schur decomposition at construction time. Once the
  * decomposition is computed, you can use the matrixU() and matrixT()
  * functions to retrieve the matrices U and V in the decomposition.
  *
  * \note This code is inspired from Jampack
  *
  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class ComplexSchur
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type \p _MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3

    /** \brief Complex scalar type for \p _MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for the matrices in the Schur decomposition.
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of \p _MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;

    /** \brief Default constructor.
      *
      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user
      * intends to perform decompositions via compute().  The \p size
      * parameter is only used as a hint. It is not an error to give a
      * wrong \p size, but it may impair performance.
      *
      * \sa compute() for an example.
      */
    explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
      : m_matT(size,size),
        m_matU(size,size),
        m_hess(size),
        m_isInitialized(false),
        m_matUisUptodate(false),
        m_maxIters(-1)
    {}

    /** \brief Constructor; computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      *
      * This constructor calls compute() to compute the Schur decomposition.
      *
      * \sa matrixT() and matrixU() for examples.
      */
    template<typename InputType>
    explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
      : m_matT(matrix.rows(),matrix.cols()),
        m_matU(matrix.rows(),matrix.cols()),
        m_hess(matrix.rows()),
        m_isInitialized(false),
        m_matUisUptodate(false),
        m_maxIters(-1)
    {
      compute(matrix.derived(), computeU);
    }

    /** \brief Returns the unitary matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix U.
      *
      * It is assumed that either the constructor
      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
      * member function compute(const MatrixType& matrix, bool computeU)
      * has been called before to compute the Schur decomposition of a
      * matrix, and that \p computeU was set to true (the default
      * value).
      *
      * Example: \include ComplexSchur_matrixU.cpp
      * Output: \verbinclude ComplexSchur_matrixU.out
      */
    const ComplexMatrixType& matrixU() const
    {
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
      return m_matU;
    }

    /** \brief Returns the triangular matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix T.
      *
      * It is assumed that either the constructor
      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
      * member function compute(const MatrixType& matrix, bool computeU)
      * has been called before to compute the Schur decomposition of a
      * matrix.
      *
      * Note that this function returns a plain square matrix. If you want to reference
      * only the upper triangular part, use:
      * \code schur.matrixT().triangularView<Upper>() \endcode 
      *
      * Example: \include ComplexSchur_matrixT.cpp
      * Output: \verbinclude ComplexSchur_matrixT.out
      */
    const ComplexMatrixType& matrixT() const
    {
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
      return m_matT;
    }

    /** \brief Computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.

      * \returns    Reference to \c *this
      *
      * The Schur decomposition is computed by first reducing the
      * matrix to Hessenberg form using the class
      * HessenbergDecomposition. The Hessenberg matrix is then reduced
      * to triangular form by performing QR iterations with a single
      * shift. The cost of computing the Schur decomposition depends
      * on the number of iterations; as a rough guide, it may be taken
      * on the number of iterations; as a rough guide, it may be taken
      * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
      * if \a computeU is false.
      *
      * Example: \include ComplexSchur_compute.cpp
      * Output: \verbinclude ComplexSchur_compute.out
      *
      * \sa compute(const MatrixType&, bool, Index)
      */
    template<typename InputType>
    ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
    
    /** \brief Compute Schur decomposition from a given Hessenberg matrix
     *  \param[in] matrixH Matrix in Hessenberg form H
     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
     *  \param computeU Computes the matriX U of the Schur vectors
     * \return Reference to \c *this
     * 
     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
     *  using either the class HessenbergDecomposition or another mean. 
     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
     *  When computeU is true, this routine computes the matrix U such that 
     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
     * 
     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
     * is not available, the user should give an identity matrix (Q.setIdentity())
     * 
     * \sa compute(const MatrixType&, bool)
     */
    template<typename HessMatrixType, typename OrthMatrixType>
    ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was successful, \c NoConvergence otherwise.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
      return m_info;
    }

    /** \brief Sets the maximum number of iterations allowed. 
      *
      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
      * of the matrix.
      */
    ComplexSchur& setMaxIterations(Index maxIters)
    {
      m_maxIters = maxIters;
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_maxIters;
    }

    /** \brief Maximum number of iterations per row.
      *
      * If not otherwise specified, the maximum number of iterations is this number times the size of the
      * matrix. It is currently set to 30.
      */
    static const int m_maxIterationsPerRow = 30;

  protected:
    ComplexMatrixType m_matT, m_matU;
    HessenbergDecomposition<MatrixType> m_hess;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_matUisUptodate;
    Index m_maxIters;

  private:  
    bool subdiagonalEntryIsNeglegible(Index i);
    ComplexScalar computeShift(Index iu, Index iter);
    void reduceToTriangularForm(bool computeU);
    friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
};

/** If m_matT(i+1,i) is neglegible in floating point arithmetic
  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
  * return true, else return false. */
template<typename MatrixType>
inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
{
  RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
  RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
  if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
  {
    m_matT.coeffRef(i+1,i) = ComplexScalar(0);
    return true;
  }
  return false;
}


/** Compute the shift in the current QR iteration. */
template<typename MatrixType>
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
{
  using std::abs;
  if (iter == 10 || iter == 20) 
  {
    // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
    return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
  }

  // compute the shift as one of the eigenvalues of t, the 2x2
  // diagonal block on the bottom of the active submatrix
  Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
  RealScalar normt = t.cwiseAbs().sum();
  t /= normt;     // the normalization by sf is to avoid under/overflow

  ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
  ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
  ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
  ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
  ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
  ComplexScalar eival1 = (trace + disc) / RealScalar(2);
  ComplexScalar eival2 = (trace - disc) / RealScalar(2);
  RealScalar eival1_norm = numext::norm1(eival1);
  RealScalar eival2_norm = numext::norm1(eival2);
  // A division by zero can only occur if eival1==eival2==0.
  // In this case, det==0, and all we have to do is checking that eival2_norm!=0
  if(eival1_norm > eival2_norm)
    eival2 = det / eival1;
  else if(eival2_norm!=RealScalar(0))
    eival1 = det / eival2;

  // choose the eigenvalue closest to the bottom entry of the diagonal
  if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
    return normt * eival1;
  else
    return normt * eival2;
}


template<typename MatrixType>
template<typename InputType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
{
  m_matUisUptodate = false;
  eigen_assert(matrix.cols() == matrix.rows());

  if(matrix.cols() == 1)
  {
    m_matT = matrix.derived().template cast<ComplexScalar>();
    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
    m_info = Success;
    m_isInitialized = true;
    m_matUisUptodate = computeU;
    return *this;
  }

  internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
  computeFromHessenberg(m_matT, m_matU, computeU);
  return *this;
}

template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
{
  m_matT = matrixH;
  if(computeU)
    m_matU = matrixQ;
  reduceToTriangularForm(computeU);
  return *this;
}
namespace internal {

/* Reduce given matrix to Hessenberg form */
template<typename MatrixType, bool IsComplex>
struct complex_schur_reduce_to_hessenberg
{
  // this is the implementation for the case IsComplex = true
  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
  {
    _this.m_hess.compute(matrix);
    _this.m_matT = _this.m_hess.matrixH();
    if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
  }
};

template<typename MatrixType>
struct complex_schur_reduce_to_hessenberg<MatrixType, false>
{
  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
  {
    typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;

    // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
    _this.m_hess.compute(matrix);
    _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
    if(computeU)  
    {
      // This may cause an allocation which seems to be avoidable
      MatrixType Q = _this.m_hess.matrixQ(); 
      _this.m_matU = Q.template cast<ComplexScalar>();
    }
  }
};

} // end namespace internal

// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
template<typename MatrixType>
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
{  
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * m_matT.rows();

  // The matrix m_matT is divided in three parts. 
  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
  // Rows il,...,iu is the part we are working on (the active submatrix).
  // Rows iu+1,...,end are already brought in triangular form.
  Index iu = m_matT.cols() - 1;
  Index il;
  Index iter = 0; // number of iterations we are working on the (iu,iu) element
  Index totalIter = 0; // number of iterations for whole matrix

  while(true)
  {
    // find iu, the bottom row of the active submatrix
    while(iu > 0)
    {
      if(!subdiagonalEntryIsNeglegible(iu-1)) break;
      iter = 0;
      --iu;
    }

    // if iu is zero then we are done; the whole matrix is triangularized
    if(iu==0) break;

    // if we spent too many iterations, we give up
    iter++;
    totalIter++;
    if(totalIter > maxIters) break;

    // find il, the top row of the active submatrix
    il = iu-1;
    while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
    {
      --il;
    }

    /* perform the QR step using Givens rotations. The first rotation
       creates a bulge; the (il+2,il) element becomes nonzero. This
       bulge is chased down to the bottom of the active submatrix. */

    ComplexScalar shift = computeShift(iu, iter);
    JacobiRotation<ComplexScalar> rot;
    rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
    m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
    m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
    if(computeU) m_matU.applyOnTheRight(il, il+1, rot);

    for(Index i=il+1 ; i<iu ; i++)
    {
      rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
      m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
      m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
      m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
      if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
    }
  }

  if(totalIter <= maxIters)
    m_info = Success;
  else
    m_info = NoConvergence;

  m_isInitialized = true;
  m_matUisUptodate = computeU;
}

} // end namespace Eigen

#endif // EIGEN_COMPLEX_SCHUR_H