aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/ComplexEigenSolver.h
blob: 5f956e49d01afd0e38722958d865cd3489634ab9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
#define EIGEN_COMPLEX_EIGEN_SOLVER_H

/** \eigenvalues_module \ingroup Eigenvalues_Module
  * \nonstableyet
  *
  * \class ComplexEigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of general complex matrices
  *
  * \tparam _MatrixType the type of the matrix of which we are
  * computing the eigendecomposition; this is expected to be an
  * instantiation of the Matrix class template.
  *
  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
  * \f$.  If \f$ D \f$ is a diagonal matrix with the eigenvalues on
  * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
  * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
  * almost always invertible, in which case we have \f$ A = V D V^{-1}
  * \f$. This is called the eigendecomposition.
  *
  * The main function in this class is compute(), which computes the
  * eigenvalues and eigenvectors of a given function. The
  * documentation for that function contains an example showing the
  * main features of the class.
  *
  * \sa class EigenSolver, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class ComplexEigenSolver
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type \p _MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** \brief Complex scalar type for \p _MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 
      *
      * This is a column vector with entries of type #ComplexScalar.
      * The length of the vector is the size of \p _MatrixType.
      */
    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;

    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of \p _MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;

    /** \brief Default constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute().
      */
    ComplexEigenSolver()
            : m_eivec(),
              m_eivalues(),
              m_schur(),
              m_isInitialized(false),
              m_matX()
    {}
    
    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa ComplexEigenSolver()
      */
    ComplexEigenSolver(int size)
            : m_eivec(size, size),
              m_eivalues(size),
              m_schur(size),
              m_isInitialized(false),
              m_matX(size, size)
    {}

    /** \brief Constructor; computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      *
      * This constructor calls compute() to compute the eigendecomposition.
      */
    ComplexEigenSolver(const MatrixType& matrix)
            : m_eivec(matrix.rows(),matrix.cols()),
              m_eivalues(matrix.cols()),
              m_schur(matrix.rows()),
              m_isInitialized(false),
              m_matX(matrix.rows(),matrix.cols())
    {
      compute(matrix);
    }

    /** \brief Returns the eigenvectors of given matrix. 
      *
      * \returns  A const reference to the matrix whose columns are the eigenvectors.
      *
      * It is assumed that either the constructor
      * ComplexEigenSolver(const MatrixType& matrix) or the member
      * function compute(const MatrixType& matrix) has been called
      * before to compute the eigendecomposition of a matrix. This
      * function returns a matrix whose columns are the
      * eigenvectors. Column \f$ k \f$ is an eigenvector
      * corresponding to eigenvalue number \f$ k \f$ as returned by
      * eigenvalues().  The eigenvectors are normalized to have
      * (Euclidean) norm equal to one. The matrix returned by this
      * function is the matrix \f$ V \f$ in the eigendecomposition \f$
      * A = V D V^{-1} \f$, if it exists.
      *
      * Example: \include ComplexEigenSolver_eigenvectors.cpp
      * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
      */
    const EigenvectorType& eigenvectors() const
    {
      ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
      return m_eivec;
    }

    /** \brief Returns the eigenvalues of given matrix. 
      *
      * \returns A const reference to the column vector containing the eigenvalues.
      *
      * It is assumed that either the constructor
      * ComplexEigenSolver(const MatrixType& matrix) or the member
      * function compute(const MatrixType& matrix) has been called
      * before to compute the eigendecomposition of a matrix. This
      * function returns a column vector containing the
      * eigenvalues. Eigenvalues are repeated according to their
      * algebraic multiplicity, so there are as many eigenvalues as
      * rows in the matrix.
      *
      * Example: \include ComplexEigenSolver_eigenvalues.cpp
      * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
      */
    const EigenvalueType& eigenvalues() const
    {
      ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
      return m_eivalues;
    }

    /** \brief Computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      *
      * This function computes the eigenvalues and eigenvectors of \p
      * matrix.  The eigenvalues() and eigenvectors() functions can be
      * used to retrieve the computed eigendecomposition.
      *
      * The matrix is first reduced to Schur form using the
      * ComplexSchur class. The Schur decomposition is then used to
      * compute the eigenvalues and eigenvectors.
      *
      * The cost of the computation is dominated by the cost of the
      * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
      * is the size of the matrix.
      *
      * Example: \include ComplexEigenSolver_compute.cpp
      * Output: \verbinclude ComplexEigenSolver_compute.out
      */
    void compute(const MatrixType& matrix);

  protected:
    EigenvectorType m_eivec;
    EigenvalueType m_eivalues;
    ComplexSchur<MatrixType> m_schur;
    bool m_isInitialized;
    EigenvectorType m_matX;
};


template<typename MatrixType>
void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
{
  // this code is inspired from Jampack
  assert(matrix.cols() == matrix.rows());
  const int n = matrix.cols();
  const RealScalar matrixnorm = matrix.norm();

  // Step 1: Do a complex Schur decomposition, A = U T U^*
  // The eigenvalues are on the diagonal of T.
  m_schur.compute(matrix);
  m_eivalues = m_schur.matrixT().diagonal();

  // Step 2: Compute X such that T = X D X^(-1), where D is the diagonal of T.
  // The matrix X is unit triangular.
  m_matX = EigenvectorType::Zero(n, n);
  for(int k=n-1 ; k>=0 ; k--)
  {
    m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
    // Compute X(i,k) using the (i,k) entry of the equation X T = D X
    for(int i=k-1 ; i>=0 ; i--)
    {
      m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
      if(k-i-1>0)
        m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
      ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
      if(z==ComplexScalar(0))
      {
	// If the i-th and k-th eigenvalue are equal, then z equals 0. 
	// Use a small value instead, to prevent division by zero.
        ei_real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
      }
      m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
    }
  }

  // Step 3: Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
  m_eivec.noalias() = m_schur.matrixU() * m_matX;
  // .. and normalize the eigenvectors
  for(int k=0 ; k<n ; k++)
  {
    m_eivec.col(k).normalize();
  }
  m_isInitialized = true;

  // Step 4: Sort the eigenvalues
  for (int i=0; i<n; i++)
  {
    int k;
    m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
    if (k != 0)
    {
      k += i;
      std::swap(m_eivalues[k],m_eivalues[i]);
      m_eivec.col(i).swap(m_eivec.col(k));
    }
  }
}



#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H