aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/ComplexEigenSolver.h
blob: 0441d4f02f3a22abd16238aefdad413b3b4be9f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
#define EIGEN_COMPLEX_EIGEN_SOLVER_H

/** \eigenvalues_module \ingroup Eigenvalues_Module
  * \nonstableyet
  *
  * \class ComplexEigenSolver
  *
  * \brief Eigen values/vectors solver for general complex matrices
  *
  * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
  *
  * \sa class EigenSolver, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class ComplexEigenSolver
{
  public:
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef std::complex<RealScalar> Complex;
    typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType;
    typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType;

    /**
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via ComplexEigenSolver::compute(const MatrixType&).
    */
    ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false)
    {}

    ComplexEigenSolver(const MatrixType& matrix)
            : m_eivec(matrix.rows(),matrix.cols()),
              m_eivalues(matrix.cols()),
              m_isInitialized(false)
    {
      compute(matrix);
    }

    EigenvectorType eigenvectors(void) const
    {
      ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
      return m_eivec;
    }

    EigenvalueType eigenvalues() const
    {
      ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
      return m_eivalues;
    }

    void compute(const MatrixType& matrix);

  protected:
    MatrixType m_eivec;
    EigenvalueType m_eivalues;
    bool m_isInitialized;
};


template<typename MatrixType>
void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
{
  // this code is inspired from Jampack
  assert(matrix.cols() == matrix.rows());
  int n = matrix.cols();
  m_eivalues.resize(n,1);
  m_eivec.resize(n,n);

  RealScalar eps = epsilon<RealScalar>();

  // Reduce to complex Schur form
  ComplexSchur<MatrixType> schur(matrix);

  m_eivalues = schur.matrixT().diagonal();

  m_eivec.setZero();

  Scalar d2, z;
  RealScalar norm = matrix.norm();

  // compute the (normalized) eigenvectors
  for(int k=n-1 ; k>=0 ; k--)
  {
    d2 = schur.matrixT().coeff(k,k);
    m_eivec.coeffRef(k,k) = Scalar(1.0,0.0);
    for(int i=k-1 ; i>=0 ; i--)
    {
      m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
      if(k-i-1>0)
        m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value();
      z = schur.matrixT().coeff(i,i) - d2;
      if(z==Scalar(0))
        ei_real_ref(z) = eps * norm;
      m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z;

    }
    m_eivec.col(k).normalize();
  }

  m_eivec = schur.matrixU() * m_eivec;
  m_isInitialized = true;

  // sort the eigenvalues
  {
    for (int i=0; i<n; i++)
    {
      int k;
      m_eivalues.cwiseAbs().end(n-i).minCoeff(&k);
      if (k != 0)
      {
        k += i;
        std::swap(m_eivalues[k],m_eivalues[i]);
        m_eivec.col(i).swap(m_eivec.col(k));
      }
    }
  }
}



#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H