aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/XprHelper.h
blob: 4e2c24f3016a305cd70255a1c0f5830b2f348746 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H

// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
  struct ei_empty_struct{char _ei_dummy_;};
  #define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
#else
  #define EIGEN_EMPTY_STRUCT
#endif

//classes inheriting ei_no_assignment_operator don't generate a default operator=.
class ei_no_assignment_operator
{
  private:
    ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
};

/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that
  * can be accessed using value() and setValue().
  * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
  */
template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
{
  public:
    ei_int_if_dynamic() {}
    explicit ei_int_if_dynamic(int) {}
    static int value() { return Value; }
    void setValue(int) {}
};

template<> class ei_int_if_dynamic<Dynamic>
{
    int m_value;
    ei_int_if_dynamic() {}
  public:
    explicit ei_int_if_dynamic(int value) : m_value(value) {}
    int value() const { return m_value; }
    void setValue(int value) { m_value = value; }
};

template<typename T> struct ei_functor_traits
{
  enum
  {
    Cost = 10,
    PacketAccess = false
  };
};

template<typename T> struct ei_packet_traits;

template<typename T> struct ei_unpacket_traits
{
  typedef T type;
  enum {size=1};
};

template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class ei_compute_matrix_flags
{
    enum {
      row_major_bit = Options&RowMajor ? RowMajorBit : 0,
      inner_max_size = MaxCols==1 ? MaxRows
                     : MaxRows==1 ? MaxCols
                     : row_major_bit ? MaxCols : MaxRows,
      is_big = inner_max_size == Dynamic,
      is_packet_size_multiple = MaxRows==Dynamic || MaxCols==Dynamic || ((MaxCols*MaxRows) % ei_packet_traits<Scalar>::size) == 0,
      aligned_bit = (((Options&DontAlign)==0) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0,
      packet_access_bit = ei_packet_traits<Scalar>::size > 1 && aligned_bit ? PacketAccessBit : 0
    };

  public:
    enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};

template<int _Rows, int _Cols> struct ei_size_at_compile_time
{
  enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};

/* ei_eval : the return type of eval(). For matrices, this is just a const reference
 * in order to avoid a useless copy
 */

template<typename T, typename StorageType = typename ei_traits<T>::StorageType> class ei_eval;

template<typename T> struct ei_eval<T,Dense>
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};

// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
struct ei_eval<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense>
{
  typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
};

/* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type,
 * whereas ei_eval is a const reference in the case of a matrix
 */
template<typename T> struct ei_plain_matrix_type
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};

/* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major
 */
template<typename T> struct ei_plain_matrix_type_column_major
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                AutoAlign | ColMajor,
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};

/* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major
 */
template<typename T> struct ei_plain_matrix_type_row_major
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                AutoAlign | RowMajor,
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};

template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };

/** \internal Determines how a given expression should be nested into another one.
  * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
  * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
  * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
  * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
  * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
  *
  * \param T the type of the expression being nested
  * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
  *
  * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
  * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
  * the Product expression uses: ei_nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
  * ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
  * since a is of type Matrix3d, the Product expression nests it as ei_nested<Matrix3d, 3>::ret, which turns out to be
  * const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point
  * in copying it into another matrix.
  */
template<typename T, int n=1, typename PlainMatrixType = typename ei_eval<T>::type> struct ei_nested
{
  enum {
    CostEval   = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
    CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
  };
  typedef typename ei_meta_if<
    ei_must_nest_by_value<T>::ret,
    T,
    typename ei_meta_if<
      (int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
      || ( int(CostEval) <= int(CostNoEval) ),
      PlainMatrixType,
      const T&
    >::ret
  >::ret type;
};

template<unsigned int Flags> struct ei_are_flags_consistent
{
  enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) )
  };
};

/** \internal Helper base class to add a scalar multiple operator
  * overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
         bool EnableIt = !ei_is_same_type<Scalar,OtherScalar>::ret >
struct ei_special_scalar_op_base : public AnyMatrixBase<Derived>
{
  // dummy operator* so that the
  // "using ei_special_scalar_op_base::operator*" compiles
  void operator*() const;
};

template<typename Derived,typename Scalar,typename OtherScalar>
struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public AnyMatrixBase<Derived>
{
  const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar) const
  {
    return CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
      (*static_cast<const Derived*>(this), ei_scalar_multiple2_op<Scalar,OtherScalar>(scalar));
  }

  inline friend const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar, const Derived& matrix)
  { return matrix*scalar; }
};

/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
  * TODO: could be a good idea to define a big ReturnType struct ??
  */
template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
  typedef Block<ExpressionType, RowsOrSize, Cols> Type;
};

template<typename ExpressionType> struct HNormalizedReturnType {

  enum {
    SizeAtCompileTime = ExpressionType::SizeAtCompileTime,
    SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
  };
  typedef Block<ExpressionType,
                ei_traits<ExpressionType>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
                ei_traits<ExpressionType>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
  typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<ExpressionType>::Scalar>,
              NestByValue<StartMinusOne> > Type;
};

template<typename XprType, typename CastType> struct ei_cast_return_type
{
  typedef typename XprType::Scalar CurrentScalarType;
  typedef typename ei_cleantype<CastType>::type _CastType;
  typedef typename _CastType::Scalar NewScalarType;
  typedef typename ei_meta_if<ei_is_same_type<CurrentScalarType,NewScalarType>::ret,
                              const XprType&,CastType>::ret type;
};

template <typename A, typename B> struct ei_promote_storage_type;

template <typename A> struct ei_promote_storage_type<A,A>
{
  typedef A ret;
};

#endif // EIGEN_XPRHELPER_H