aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/XprHelper.h
blob: 09866ad8da341d3308c921adf3591e841255d0fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H

// just a workaround because GCC seems to not really like empty structs
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
// so currently we simply disable this optimization for gcc 4.3
#if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3)
  #define EIGEN_EMPTY_STRUCT_CTOR(X) \
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {}
#else
  #define EIGEN_EMPTY_STRUCT_CTOR(X)
#endif

namespace Eigen {

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;

namespace internal {

//classes inheriting no_assignment_operator don't generate a default operator=.
class no_assignment_operator
{
  private:
    no_assignment_operator& operator=(const no_assignment_operator&);
};

/** \internal return the index type with the largest number of bits */
template<typename I1, typename I2>
struct promote_index_type
{
  typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
};

/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
  * can be accessed using value() and setValue().
  * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
  */
template<typename T, int Value> class variable_if_dynamic
{
  public:
    EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
    EIGEN_DEVICE_FUNC explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
    EIGEN_DEVICE_FUNC static T value() { return T(Value); }
    EIGEN_DEVICE_FUNC void setValue(T) {}
};

template<typename T> class variable_if_dynamic<T, Dynamic>
{
    T m_value;
    EIGEN_DEVICE_FUNC variable_if_dynamic() { eigen_assert(false); }
  public:
    EIGEN_DEVICE_FUNC explicit variable_if_dynamic(T value) : m_value(value) {}
    EIGEN_DEVICE_FUNC T value() const { return m_value; }
    EIGEN_DEVICE_FUNC void setValue(T value) { m_value = value; }
};

/** \internal like variable_if_dynamic but for DynamicIndex
  */
template<typename T, int Value> class variable_if_dynamicindex
{
  public:
    EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
    EIGEN_DEVICE_FUNC explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
    EIGEN_DEVICE_FUNC static T value() { return T(Value); }
    EIGEN_DEVICE_FUNC void setValue(T) {}
};

template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
{
    T m_value;
    EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); }
  public:
    EIGEN_DEVICE_FUNC explicit variable_if_dynamicindex(T value) : m_value(value) {}
    EIGEN_DEVICE_FUNC T value() const { return m_value; }
    EIGEN_DEVICE_FUNC void setValue(T value) { m_value = value; }
};

template<typename T> struct functor_traits
{
  enum
  {
    Cost = 10,
    PacketAccess = false,
    IsRepeatable = false
  };
};

template<typename T> struct packet_traits;

template<typename T> struct unpacket_traits
{
  typedef T type;
  typedef T half;
  enum {size=1};
};

template<typename _Scalar, int _Rows, int _Cols,
         int _Options = AutoAlign |
                          ( (_Rows==1 && _Cols!=1) ? RowMajor
                          : (_Cols==1 && _Rows!=1) ? ColMajor
                          : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
         int _MaxRows = _Rows,
         int _MaxCols = _Cols
> class make_proper_matrix_type
{
    enum {
      IsColVector = _Cols==1 && _Rows!=1,
      IsRowVector = _Rows==1 && _Cols!=1,
      Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
              : IsRowVector ? (_Options | RowMajor) & ~ColMajor
              : _Options
    };
  public:
    typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
};

template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
    enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 };
  public:
    // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<>
    // and then propagate this information to the evaluator's flags.
    // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage.
    enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit };
};

template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_evaluator_flags
{
    enum {
      row_major_bit = Options&RowMajor ? RowMajorBit : 0,
      is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,

      aligned_bit =
      (
            ((Options&DontAlign)==0)
        && (
#if EIGEN_ALIGN_STATICALLY
             ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0))
#else
             0
#endif

          ||

#if EIGEN_ALIGN
             is_dynamic_size_storage
#else
             0
#endif

          )
      ) ? AlignedBit : 0,
      packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
    };

  public:
    enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};

template<int _Rows, int _Cols> struct size_at_compile_time
{
  enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};

template<typename XprType> struct size_of_xpr_at_compile_time
{
  enum { ret = size_at_compile_time<traits<XprType>::RowsAtCompileTime,traits<XprType>::ColsAtCompileTime>::ret };
};

/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
 * whereas eval is a const reference in the case of a matrix
 */

template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
template<typename T> struct plain_matrix_type<T,Dense>
{
  typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
};
template<typename T> struct plain_matrix_type<T,DiagonalShape>
{
  typedef typename T::PlainObject type;
};

template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
{
  typedef Matrix<typename traits<T>::Scalar,
                traits<T>::RowsAtCompileTime,
                traits<T>::ColsAtCompileTime,
                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                traits<T>::MaxRowsAtCompileTime,
                traits<T>::MaxColsAtCompileTime
          > type;
};

template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
{
  typedef Array<typename traits<T>::Scalar,
                traits<T>::RowsAtCompileTime,
                traits<T>::ColsAtCompileTime,
                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                traits<T>::MaxRowsAtCompileTime,
                traits<T>::MaxColsAtCompileTime
          > type;
};

/* eval : the return type of eval(). For matrices, this is just a const reference
 * in order to avoid a useless copy
 */

template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;

template<typename T> struct eval<T,Dense>
{
  typedef typename plain_matrix_type<T>::type type;
//   typedef typename T::PlainObject type;
//   typedef T::Matrix<typename traits<T>::Scalar,
//                 traits<T>::RowsAtCompileTime,
//                 traits<T>::ColsAtCompileTime,
//                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
//                 traits<T>::MaxRowsAtCompileTime,
//                 traits<T>::MaxColsAtCompileTime
//           > type;
};

template<typename T> struct eval<T,DiagonalShape>
{
  typedef typename plain_matrix_type<T>::type type;
};

// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
  typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};

template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
  typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};



/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
 */
template<typename T> struct plain_matrix_type_column_major
{
  enum { Rows = traits<T>::RowsAtCompileTime,
         Cols = traits<T>::ColsAtCompileTime,
         MaxRows = traits<T>::MaxRowsAtCompileTime,
         MaxCols = traits<T>::MaxColsAtCompileTime
  };
  typedef Matrix<typename traits<T>::Scalar,
                Rows,
                Cols,
                (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
                MaxRows,
                MaxCols
          > type;
};

/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
 */
template<typename T> struct plain_matrix_type_row_major
{
  enum { Rows = traits<T>::RowsAtCompileTime,
         Cols = traits<T>::ColsAtCompileTime,
         MaxRows = traits<T>::MaxRowsAtCompileTime,
         MaxCols = traits<T>::MaxColsAtCompileTime
  };
  typedef Matrix<typename traits<T>::Scalar,
                Rows,
                Cols,
                (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
                MaxRows,
                MaxCols
          > type;
};

// we should be able to get rid of this one too
template<typename T> struct must_nest_by_value { enum { ret = false }; };

/** \internal The reference selector for template expressions. The idea is that we don't
  * need to use references for expressions since they are light weight proxy
  * objects which should generate no copying overhead. */
template <typename T>
struct ref_selector
{
  typedef typename conditional<
    bool(traits<T>::Flags & NestByRefBit),
    T const&,
    const T
  >::type type;
};

/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
template<typename T1, typename T2>
struct transfer_constness
{
  typedef typename conditional<
    bool(internal::is_const<T1>::value),
    typename internal::add_const_on_value_type<T2>::type,
    T2
  >::type type;
};


// When using evaluators, we never evaluate when assembling the expression!!
// TODO: get rid of this nested class since it's just an alias for ref_selector.
template<typename T, int n=1, typename PlainObject = void> struct nested
{
  typedef typename ref_selector<T>::type type;
};

// However, we still need a mechanism to detect whether an expression which is evaluated multiple time
// has to be evaluated into a temporary.
// That's the purpose of this new nested_eval helper:
/** \internal Determines how a given expression should be nested when evaluated multiple times.
  * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
  * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or
  * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
  * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
  * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
  *
  * \param T the type of the expression being nested.
  * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
  * \param PlainObject the type of the temporary if needed.
  */
template<typename T, int n, typename PlainObject = typename eval<T>::type> struct nested_eval
{
  enum {
    // For the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
    // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
    // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
    // (poor choice of temporaries).
    // It's important that this value can still be squared without integer overflowing.
    DynamicAsInteger = 10000,
    ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
    ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
    CoeffReadCost = evaluator<T>::CoeffReadCost,  // TODO What if an evaluator evaluate itself into a tempory?
                                                  // Then CoeffReadCost will be small but we still have to evaluate if n>1... 
                                                  // The solution might be to ask the evaluator if it creates a temp. Perhaps we could even ask the number of temps?
    CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
    NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
    CostEvalAsInteger   = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
    CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
  };

  typedef typename conditional<
        ( (int(evaluator<T>::Flags) & EvalBeforeNestingBit) ||
          (int(CostEvalAsInteger) < int(CostNoEvalAsInteger)) ),
        PlainObject,
        typename ref_selector<T>::type
  >::type type;
};

template<typename T>
EIGEN_DEVICE_FUNC
inline T* const_cast_ptr(const T* ptr)
{
  return const_cast<T*>(ptr);
}

template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
struct dense_xpr_base
{
  /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
};

template<typename Derived>
struct dense_xpr_base<Derived, MatrixXpr>
{
  typedef MatrixBase<Derived> type;
};

template<typename Derived>
struct dense_xpr_base<Derived, ArrayXpr>
{
  typedef ArrayBase<Derived> type;
};

template<typename Derived, typename XprKind = typename traits<Derived>::XprKind, typename StorageKind = typename traits<Derived>::StorageKind>
struct generic_xpr_base;

template<typename Derived, typename XprKind>
struct generic_xpr_base<Derived, XprKind, Dense>
{
  typedef typename dense_xpr_base<Derived,XprKind>::type type;
};

/** \internal Helper base class to add a scalar multiple operator
  * overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
         bool EnableIt = !is_same<Scalar,OtherScalar>::value >
struct special_scalar_op_base : public DenseCoeffsBase<Derived>
{
  // dummy operator* so that the
  // "using special_scalar_op_base::operator*" compiles
  void operator*() const;
};

template<typename Derived,typename Scalar,typename OtherScalar>
struct special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public DenseCoeffsBase<Derived>
{
  const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar) const
  {
#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
    EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
#endif
    return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
      (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
  }

  inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar, const Derived& matrix)
  {
#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
    EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
#endif
    return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar);
  }
};

template<typename XprType, typename CastType> struct cast_return_type
{
  typedef typename XprType::Scalar CurrentScalarType;
  typedef typename remove_all<CastType>::type _CastType;
  typedef typename _CastType::Scalar NewScalarType;
  typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
                              const XprType&,CastType>::type type;
};

/** \internal Specify the "storage kind" of applying a coefficient-wise
  * binary operations between two expressions of kinds A and B respectively.
  * The template parameter Functor permits to specialize the resulting storage kind wrt to
  * the functor.
  * The default rules are as follows:
  * \code
  * A     op A      -> A
  * A     op dense  -> dense
  * dense op B      -> dense
  * A     *  dense  -> A
  * dense *  B      -> B
  * \endcode
  */
template <typename A, typename B, typename Functor> struct cwise_promote_storage_type;

template <typename A, typename Functor>                   struct cwise_promote_storage_type<A,A,Functor>                                      { typedef A     ret; };
template <typename Functor>                               struct cwise_promote_storage_type<Dense,Dense,Functor>                              { typedef Dense ret; };
template <typename ScalarA, typename ScalarB>             struct cwise_promote_storage_type<Dense,Dense,scalar_product_op<ScalarA,ScalarB> >  { typedef Dense ret; };
template <typename A, typename Functor>                   struct cwise_promote_storage_type<A,Dense,Functor>                                  { typedef Dense ret; };
template <typename B, typename Functor>                   struct cwise_promote_storage_type<Dense,B,Functor>                                  { typedef Dense ret; };
template <typename A, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<A,Dense,scalar_product_op<ScalarA,ScalarB> >      { typedef A     ret; };
template <typename B, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<Dense,B,scalar_product_op<ScalarA,ScalarB> >      { typedef B     ret; };

/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B.
  * The template parameter ProductTag permits to specialize the resulting storage kind wrt to
  * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct.
  * The default rules are as follows:
  * \code
  *  K * K            -> K
  *  dense * K        -> dense
  *  K * dense        -> dense
  *  diag * K         -> K
  *  K * diag         -> K
  *  Perm * K         -> K
  * K * Perm          -> K
  * \endcode
  */
template <typename A, typename B, int ProductTag> struct product_promote_storage_type;

template <typename A, int ProductTag> struct product_promote_storage_type<A,                  A,                  ProductTag> { typedef A     ret;};
template <int ProductTag>             struct product_promote_storage_type<Dense,              Dense,              ProductTag> { typedef Dense ret;};
template <typename A, int ProductTag> struct product_promote_storage_type<A,                  Dense,              ProductTag> { typedef Dense ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<Dense,              B,                  ProductTag> { typedef Dense ret; };

template <typename A, int ProductTag> struct product_promote_storage_type<A,                  DiagonalShape,      ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<DiagonalShape,      B,                  ProductTag> { typedef B ret; };
template <int ProductTag>             struct product_promote_storage_type<Dense,              DiagonalShape,      ProductTag> { typedef Dense ret; };
template <int ProductTag>             struct product_promote_storage_type<DiagonalShape,      Dense,              ProductTag> { typedef Dense ret; };

template <typename A, int ProductTag> struct product_promote_storage_type<A,                  PermutationStorage, ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<PermutationStorage, B,                  ProductTag> { typedef B ret; };
template <int ProductTag>             struct product_promote_storage_type<Dense,              PermutationStorage, ProductTag> { typedef Dense ret; };
template <int ProductTag>             struct product_promote_storage_type<PermutationStorage, Dense,              ProductTag> { typedef Dense ret; };

/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
  * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
  */
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_row_type
{
  typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
  typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixRowType,
    ArrayRowType 
  >::type type;
};

template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_col_type
{
  typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
  typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixColType,
    ArrayColType 
  >::type type;
};

template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_diag_type
{
  enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
         max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
  };
  typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
  typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixDiagType,
    ArrayDiagType 
  >::type type;
};

template<typename ExpressionType>
struct is_lvalue
{
  enum { value = !bool(is_const<ExpressionType>::value) &&
                 bool(traits<ExpressionType>::Flags & LvalueBit) };
};

template<typename T> struct is_diagonal
{ enum { ret = false }; };

template<typename T> struct is_diagonal<DiagonalBase<T> >
{ enum { ret = true }; };

template<typename T> struct is_diagonal<DiagonalWrapper<T> >
{ enum { ret = true }; };

template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
{ enum { ret = true }; };

template<typename S1, typename S2> struct glue_shapes;
template<> struct glue_shapes<DenseShape,TriangularShape> { typedef TriangularShape type;  };

} // end namespace internal

// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
// that would take two operands of different types. If there were such an example, then this check should be
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
// currently they take only one typename Scalar template parameter.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
  EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
                        ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
                        : int(internal::is_same<LHS, RHS>::value)), \
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    
} // end namespace Eigen

#endif // EIGEN_XPRHELPER_H