aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/XprHelper.h
blob: 05d50ce218bf61fa97fd9192ba78839fe74d9d44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H

// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
  struct ei_empty_struct{char _ei_dummy_;};
  #define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
#else
  #define EIGEN_EMPTY_STRUCT
#endif

//classes inheriting ei_no_assignment_operator don't generate a default operator=.
class ei_no_assignment_operator
{
  private:
    ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
};

template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
{
  public:
    ei_int_if_dynamic() {}
    explicit ei_int_if_dynamic(int) {}
    static int value() { return Value; }
    void setValue(int) {}
};

template<> class ei_int_if_dynamic<Dynamic>
{
    int m_value;
    ei_int_if_dynamic() {}
  public:
    explicit ei_int_if_dynamic(int value) : m_value(value) {}
    int value() const { return m_value; }
    void setValue(int value) { m_value = value; }
};

template<typename T> struct ei_functor_traits
{
  enum
  {
    Cost = 10,
    PacketAccess = false
  };
};

template<typename T> struct ei_packet_traits
{
  typedef T type;
  enum {size=1};
};

template<typename T> struct ei_unpacket_traits
{
  typedef T type;
  enum {size=1};
};


template<typename Scalar, int Rows, int Cols, int StorageOrder, int MaxRows, int MaxCols>
class ei_compute_matrix_flags
{
    enum {
      row_major_bit = (Rows != 1 && Cols != 1)  // if this is not a vector,
                                                // then the storage order really matters,
                                                // so let us strictly honor the user's choice.
                    ? StorageOrder
                    : Cols > 1 ? RowMajorBit : 0,
      inner_max_size = row_major_bit ? MaxCols : MaxRows,
      is_big = inner_max_size == Dynamic,
      is_packet_size_multiple = (Cols * Rows)%ei_packet_traits<Scalar>::size==0,
      packet_access_bit = ei_packet_traits<Scalar>::size > 1
                          && (is_big || is_packet_size_multiple) ? PacketAccessBit : 0,
      aligned_bit = packet_access_bit && (is_big || is_packet_size_multiple) ? AlignedBit : 0
    };

  public:
    enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};

template<int _Rows, int _Cols> struct ei_size_at_compile_time
{
  enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};

template<typename T, int Sparseness = ei_traits<T>::Flags&SparseBit> class ei_eval;

template<typename T> struct ei_eval<T,IsDense>
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor,
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};


template<typename T> struct ei_eval_to_column_major
{
  typedef Matrix<typename ei_traits<T>::Scalar,
                ei_traits<T>::RowsAtCompileTime,
                ei_traits<T>::ColsAtCompileTime,
                ColMajor,
                ei_traits<T>::MaxRowsAtCompileTime,
                ei_traits<T>::MaxColsAtCompileTime
          > type;
};

template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };

template<typename T, int n=1, typename EvalType = typename ei_eval<T>::type> struct ei_nested
{
  enum {
    CostEval   = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
    CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
  };
  typedef typename ei_meta_if<
    ei_must_nest_by_value<T>::ret,
    T,
    typename ei_meta_if<
      (int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
      || ( int(CostEval) <= int(CostNoEval) ),
      EvalType,
      const T&
    >::ret
  >::ret type;
};

template<unsigned int Flags> struct ei_are_flags_consistent
{
  enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) )
  };
};

/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
  * TODO: could be a good idea to define a big ReturnType struct ??
  */
template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
  typedef Block<ExpressionType, (ei_traits<ExpressionType>::RowsAtCompileTime == 1 ? 1 : RowsOrSize),
                                (ei_traits<ExpressionType>::ColsAtCompileTime == 1 ? 1 : RowsOrSize)> SubVectorType;
  typedef Block<ExpressionType, RowsOrSize, Cols> Type;
};

template<typename CurrentType, typename NewType> struct ei_cast_return_type
{
  typedef typename ei_meta_if<ei_is_same_type<CurrentType,NewType>::ret,const CurrentType&,NewType>::ret type;
};

#endif // EIGEN_XPRHELPER_H