1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_META_H
#define EIGEN_META_H
// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
struct ei_empty_struct{char _ei_dummy_;};
#define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
#else
#define EIGEN_EMPTY_STRUCT
#endif
//classes inheriting ei_no_assignment_operator don't generate a default operator=.
class ei_no_assignment_operator
{
private:
ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
};
template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
{
public:
ei_int_if_dynamic() {}
explicit ei_int_if_dynamic(int) {}
static int value() { return Value; }
void setValue(int) {}
};
template<> class ei_int_if_dynamic<Dynamic>
{
int m_value;
ei_int_if_dynamic() {}
public:
explicit ei_int_if_dynamic(int value) : m_value(value) {}
int value() const { return m_value; }
void setValue(int value) { m_value = value; }
};
template <bool Condition, class Then, class Else>
struct ei_meta_if { typedef Then ret; };
template <class Then, class Else>
struct ei_meta_if <false, Then, Else> { typedef Else ret; };
template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
/** \internal
* Convenient struct to get the result type of a unary or binary functor.
*
* It supports both the current STL mechanism (using the result_type member) as well as
* upcoming next STL generation (using a templated result member).
* If none of these members is provided, then the type of the first argument is returned.
*/
template<typename T> struct ei_result_of {};
struct ei_has_none {int a[1];};
struct ei_has_std_result_type {int a[2];};
struct ei_has_tr1_result {int a[3];};
template<typename Func, typename ArgType, int SizeOf=sizeof(ei_has_none)>
struct ei_unary_result_of_select {typedef ArgType type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct ei_result_of<Func(ArgType)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(ei_has_none)>
struct ei_binary_result_of_select {typedef ArgType0 type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
template<typename T> struct ei_functor_traits
{
enum
{
Cost = 10,
IsVectorizable = false
};
};
template<typename T> struct ei_packet_traits
{
typedef T type;
enum {size=1};
};
template<typename Scalar, int Rows, int Cols, unsigned int SuggestedFlags>
class ei_corrected_matrix_flags
{
enum { is_vectorizable
= ei_packet_traits<Scalar>::size > 1
&& Rows!=Dynamic
&& Cols!=Dynamic
&&
(
SuggestedFlags&RowMajorBit
? Cols%ei_packet_traits<Scalar>::size==0
: Rows%ei_packet_traits<Scalar>::size==0
),
_flags1 = SuggestedFlags & ~(EvalBeforeNestingBit | EvalBeforeAssigningBit)
};
public:
enum { ret = is_vectorizable
? _flags1 | VectorizableBit
: _flags1 & ~VectorizableBit
};
};
template<typename T> class ei_eval
{
typedef typename ei_traits<T>::Scalar _Scalar;
enum { _Rows = ei_traits<T>::RowsAtCompileTime,
_Cols = ei_traits<T>::ColsAtCompileTime,
_Flags = ei_traits<T>::Flags
};
public:
typedef Matrix<_Scalar,
_Rows,
_Cols,
ei_corrected_matrix_flags<_Scalar, _Rows, _Cols, _Flags>::ret,
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime> type;
};
template<typename T> struct ei_unref { typedef T type; };
template<typename T> struct ei_unref<T&> { typedef T type; };
template<typename T> struct ei_is_temporary
{
enum { ret = 0 };
};
template<typename T> struct ei_is_temporary<Temporary<T> >
{
enum { ret = 1 };
};
template<typename T, int n=1> struct ei_nested
{
typedef typename ei_meta_if<
ei_is_temporary<T>::ret,
T,
typename ei_meta_if<
ei_traits<T>::Flags & EvalBeforeNestingBit
|| (n+1) * NumTraits<typename ei_traits<T>::Scalar>::ReadCost < (n-1) * T::CoeffReadCost,
typename ei_eval<T>::type,
const T&
>::ret
>::ret type;
};
#endif // EIGEN_META_H
|