aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/Meta.h
blob: 0fa818008aeb8c98f911e50d44dfc7538c266127 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_META_H
#define EIGEN_META_H

#if defined(EIGEN_CUDA_ARCH)
#include <cfloat>
#include <math_constants.h>
#endif

#if EIGEN_COMP_ICC>=1600 &&  __cplusplus >= 201103L
#include <cstdint>
#endif

namespace Eigen {

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;

/**
 * \brief The Index type as used for the API.
 * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
 * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex.
 */

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;

namespace internal {

/** \internal
  * \file Meta.h
  * This file contains generic metaprogramming classes which are not specifically related to Eigen.
  * \note In case you wonder, yes we're aware that Boost already provides all these features,
  * we however don't want to add a dependency to Boost.
  */

// Only recent versions of ICC complain about using ptrdiff_t to hold pointers,
// and older versions do not provide *intptr_t types.
#if EIGEN_COMP_ICC>=1600 &&  __cplusplus >= 201103L
typedef std::intptr_t  IntPtr;
typedef std::uintptr_t UIntPtr;
#else
typedef std::ptrdiff_t IntPtr;
typedef std::size_t UIntPtr;
#endif

struct true_type {  enum { value = 1 }; };
struct false_type { enum { value = 0 }; };

template<bool Condition, typename Then, typename Else>
struct conditional { typedef Then type; };

template<typename Then, typename Else>
struct conditional <false, Then, Else> { typedef Else type; };

template<typename T, typename U> struct is_same { enum { value = 0 }; };
template<typename T> struct is_same<T,T> { enum { value = 1 }; };

template<typename T> struct remove_reference { typedef T type; };
template<typename T> struct remove_reference<T&> { typedef T type; };

template<typename T> struct remove_pointer { typedef T type; };
template<typename T> struct remove_pointer<T*> { typedef T type; };
template<typename T> struct remove_pointer<T*const> { typedef T type; };

template <class T> struct remove_const { typedef T type; };
template <class T> struct remove_const<const T> { typedef T type; };
template <class T> struct remove_const<const T[]> { typedef T type[]; };
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };

template<typename T> struct remove_all { typedef T type; };
template<typename T> struct remove_all<const T>   { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const&>  { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T&>        { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const*>  { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T*>        { typedef typename remove_all<T>::type type; };

template<typename T> struct is_arithmetic      { enum { value = false }; };
template<> struct is_arithmetic<float>         { enum { value = true }; };
template<> struct is_arithmetic<double>        { enum { value = true }; };
template<> struct is_arithmetic<long double>   { enum { value = true }; };
template<> struct is_arithmetic<bool>          { enum { value = true }; };
template<> struct is_arithmetic<char>          { enum { value = true }; };
template<> struct is_arithmetic<signed char>   { enum { value = true }; };
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
template<> struct is_arithmetic<signed short>  { enum { value = true }; };
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
template<> struct is_arithmetic<signed int>    { enum { value = true }; };
template<> struct is_arithmetic<unsigned int>  { enum { value = true }; };
template<> struct is_arithmetic<signed long>   { enum { value = true }; };
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };

#if EIGEN_HAS_CXX11
using std::is_integral;
#else
template<typename T> struct is_integral               { enum { value = false }; };
template<> struct is_integral<bool>                   { enum { value = true }; };
template<> struct is_integral<char>                   { enum { value = true }; };
template<> struct is_integral<signed char>            { enum { value = true }; };
template<> struct is_integral<unsigned char>          { enum { value = true }; };
template<> struct is_integral<signed short>           { enum { value = true }; };
template<> struct is_integral<unsigned short>         { enum { value = true }; };
template<> struct is_integral<signed int>             { enum { value = true }; };
template<> struct is_integral<unsigned int>           { enum { value = true }; };
template<> struct is_integral<signed long>            { enum { value = true }; };
template<> struct is_integral<unsigned long>          { enum { value = true }; };
#endif


template <typename T> struct add_const { typedef const T type; };
template <typename T> struct add_const<T&> { typedef T& type; };

template <typename T> struct is_const { enum { value = 0 }; };
template <typename T> struct is_const<T const> { enum { value = 1 }; };

template<typename T> struct add_const_on_value_type            { typedef const T type;  };
template<typename T> struct add_const_on_value_type<T&>        { typedef T const& type; };
template<typename T> struct add_const_on_value_type<T*>        { typedef T const* type; };
template<typename T> struct add_const_on_value_type<T* const>  { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const>  { typedef T const* const type; };


template<typename From, typename To>
struct is_convertible_impl
{
private:
  struct any_conversion
  {
    template <typename T> any_conversion(const volatile T&);
    template <typename T> any_conversion(T&);
  };
  struct yes {int a[1];};
  struct no  {int a[2];};

  static yes test(const To&, int);
  static no  test(any_conversion, ...);

public:
  static From ms_from;
#ifdef __INTEL_COMPILER
  #pragma warning push
  #pragma warning ( disable : 2259 )
#endif
  enum { value = sizeof(test(ms_from, 0))==sizeof(yes) };
#ifdef __INTEL_COMPILER
  #pragma warning pop
#endif
};

template<typename From, typename To>
struct is_convertible
{
  enum { value = is_convertible_impl<typename remove_all<From>::type,
                                     typename remove_all<To  >::type>::value };
};

/** \internal Allows to enable/disable an overload
  * according to a compile time condition.
  */
template<bool Condition, typename T=void> struct enable_if;

template<typename T> struct enable_if<true,T>
{ typedef T type; };

#if defined(EIGEN_CUDA_ARCH)
#if !defined(__FLT_EPSILON__)
#define __FLT_EPSILON__ FLT_EPSILON
#define __DBL_EPSILON__ DBL_EPSILON
#endif

namespace device {

template<typename T> struct numeric_limits
{
  EIGEN_DEVICE_FUNC
  static T epsilon() { return 0; }
  static T (max)() { assert(false && "Highest not supported for this type"); }
  static T (min)() { assert(false && "Lowest not supported for this type"); }
  static T infinity() { assert(false && "Infinity not supported for this type"); }
  static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
};
template<> struct numeric_limits<float>
{
  EIGEN_DEVICE_FUNC
  static float epsilon() { return __FLT_EPSILON__; }
  EIGEN_DEVICE_FUNC
  static float (max)() { return CUDART_MAX_NORMAL_F; }
  EIGEN_DEVICE_FUNC
  static float (min)() { return FLT_MIN; }
  EIGEN_DEVICE_FUNC
  static float infinity() { return CUDART_INF_F; }
  EIGEN_DEVICE_FUNC
  static float quiet_NaN() { return CUDART_NAN_F; }
};
template<> struct numeric_limits<double>
{
  EIGEN_DEVICE_FUNC
  static double epsilon() { return __DBL_EPSILON__; }
  EIGEN_DEVICE_FUNC
  static double (max)() { return DBL_MAX; }
  EIGEN_DEVICE_FUNC
  static double (min)() { return DBL_MIN; }
  EIGEN_DEVICE_FUNC
  static double infinity() { return CUDART_INF; }
  EIGEN_DEVICE_FUNC
  static double quiet_NaN() { return CUDART_NAN; }
};
template<> struct numeric_limits<int>
{
  EIGEN_DEVICE_FUNC
  static int epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static int (max)() { return INT_MAX; }
  EIGEN_DEVICE_FUNC
  static int (min)() { return INT_MIN; }
};
template<> struct numeric_limits<unsigned int>
{
  EIGEN_DEVICE_FUNC
  static unsigned int epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static unsigned int (max)() { return UINT_MAX; }
  EIGEN_DEVICE_FUNC
  static unsigned int (min)() { return 0; }
};
template<> struct numeric_limits<long>
{
  EIGEN_DEVICE_FUNC
  static long epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static long (max)() { return LONG_MAX; }
  EIGEN_DEVICE_FUNC
  static long (min)() { return LONG_MIN; }
};
template<> struct numeric_limits<unsigned long>
{
  EIGEN_DEVICE_FUNC
  static unsigned long epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static unsigned long (max)() { return ULONG_MAX; }
  EIGEN_DEVICE_FUNC
  static unsigned long (min)() { return 0; }
};
template<> struct numeric_limits<long long>
{
  EIGEN_DEVICE_FUNC
  static long long epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static long long (max)() { return LLONG_MAX; }
  EIGEN_DEVICE_FUNC
  static long long (min)() { return LLONG_MIN; }
};
template<> struct numeric_limits<unsigned long long>
{
  EIGEN_DEVICE_FUNC
  static unsigned long long epsilon() { return 0; }
  EIGEN_DEVICE_FUNC
  static unsigned long long (max)() { return ULLONG_MAX; }
  EIGEN_DEVICE_FUNC
  static unsigned long long (min)() { return 0; }
};

}

#endif

/** \internal
  * A base class do disable default copy ctor and copy assignement operator.
  */
class noncopyable
{
  EIGEN_DEVICE_FUNC noncopyable(const noncopyable&);
  EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&);
protected:
  EIGEN_DEVICE_FUNC noncopyable() {}
  EIGEN_DEVICE_FUNC ~noncopyable() {}
};

/** \internal
  * Provides access to the number of elements in the object of as a compile-time constant expression.
  * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default).
  *
  * Similar to std::tuple_size, but more general.
  *
  * It currently supports:
  *  - any types T defining T::SizeAtCompileTime
  *  - plain C arrays as T[N]
  *  - std::array (c++11)
  *  - some internal types such as SingleRange and AllRange
  *
  * The second template parameter eases SFINAE-based specializations.
  */
template<typename T, typename EnableIf = void> struct array_size {
  enum { value = Dynamic };
};

template<typename T> struct array_size<T,typename internal::enable_if<((T::SizeAtCompileTime&0)==0)>::type> {
  enum { value = T::SizeAtCompileTime };
};

template<typename T, int N> struct array_size<const T (&)[N]> {
  enum { value = N };
};
template<typename T, int N> struct array_size<T (&)[N]> {
  enum { value = N };
};

#if EIGEN_HAS_CXX11
template<typename T, std::size_t N> struct array_size<const std::array<T,N> > {
  enum { value = N };
};
template<typename T, std::size_t N> struct array_size<std::array<T,N> > {
  enum { value = N };
};
#endif

/** \internal
  * Analogue of the std::size free function.
  * It returns the size of the container or view \a x of type \c T
  *
  * It currently supports:
  *  - any types T defining a member T::size() const
  *  - plain C arrays as T[N]
  *
  */
template<typename T>
Index size(const T& x) { return x.size(); }

template<typename T,std::size_t N>
Index size(const T (&) [N]) { return N; }

/** \internal
  * Convenient struct to get the result type of a unary or binary functor.
  *
  * It supports both the current STL mechanism (using the result_type member) as well as
  * upcoming next STL generation (using a templated result member).
  * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
  */
#if EIGEN_HAS_STD_RESULT_OF
template<typename T> struct result_of {
  typedef typename std::result_of<T>::type type1;
  typedef typename remove_all<type1>::type type;
};
#else
template<typename T> struct result_of { };

struct has_none {int a[1];};
struct has_std_result_type {int a[2];};
struct has_tr1_result {int a[3];};

template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;};

template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};

template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};

template<typename Func, typename ArgType>
struct result_of<Func(ArgType)> {
    template<typename T>
    static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
    template<typename T>
    static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
    static has_none               testFunctor(...);

    // note that the following indirection is needed for gcc-3.3
    enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
    typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
};

template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct result_of<Func(ArgType0,ArgType1)> {
    template<typename T>
    static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
    template<typename T>
    static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
    static has_none               testFunctor(...);

    // note that the following indirection is needed for gcc-3.3
    enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
    typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};

template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};

template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};

template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};

template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
    template<typename T>
    static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
    template<typename T>
    static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
    static has_none               testFunctor(...);

    // note that the following indirection is needed for gcc-3.3
    enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
    typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
};
#endif

struct meta_yes { char a[1]; };
struct meta_no  { char a[2]; };

// Check whether T::ReturnType does exist
template <typename T>
struct has_ReturnType
{
  template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0);
  template <typename C> static meta_no  testFunctor(...);

  enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) };
};

template<typename T> const T* return_ptr();

template <typename T, typename IndexType=Index>
struct has_nullary_operator
{
  template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0);
  static meta_no testFunctor(...);

  enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};

template <typename T, typename IndexType=Index>
struct has_unary_operator
{
  template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0);
  static meta_no testFunctor(...);

  enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};

template <typename T, typename IndexType=Index>
struct has_binary_operator
{
  template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0);
  static meta_no testFunctor(...);

  enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};

/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
  * Usage example: \code meta_sqrt<1023>::ret \endcode
  */
template<int Y,
         int InfX = 0,
         int SupX = ((Y==1) ? 1 : Y/2),
         bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
                                // use ?: instead of || just to shut up a stupid gcc 4.3 warning
class meta_sqrt
{
    enum {
      MidX = (InfX+SupX)/2,
      TakeInf = MidX*MidX > Y ? 1 : 0,
      NewInf = int(TakeInf) ? InfX : int(MidX),
      NewSup = int(TakeInf) ? int(MidX) : SupX
    };
  public:
    enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
};

template<int Y, int InfX, int SupX>
class meta_sqrt<Y, InfX, SupX, true> { public:  enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };


/** \internal Computes the least common multiple of two positive integer A and B
  * at compile-time. It implements a naive algorithm testing all multiples of A.
  * It thus works better if A>=B.
  */
template<int A, int B, int K=1, bool Done = ((A*K)%B)==0>
struct meta_least_common_multiple
{
  enum { ret = meta_least_common_multiple<A,B,K+1>::ret };
};
template<int A, int B, int K>
struct meta_least_common_multiple<A,B,K,true>
{
  enum { ret = A*K };
};

/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits
{
  enum { Defined = 0 };
};

// FIXME quick workaround around current limitation of result_of
// template<typename Scalar, typename ArgType0, typename ArgType1>
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };

} // end namespace internal

namespace numext {
  
#if defined(EIGEN_CUDA_ARCH)
template<typename T> EIGEN_DEVICE_FUNC   void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; }
#else
template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); }
#endif

#if defined(EIGEN_CUDA_ARCH)
using internal::device::numeric_limits;
#else
using std::numeric_limits;
#endif

// Integer division with rounding up.
// T is assumed to be an integer type with a>=0, and b>0
template<typename T>
T div_ceil(const T &a, const T &b)
{
  return (a+b-1) / b;
}

} // end namespace numext

} // end namespace Eigen

#endif // EIGEN_META_H