aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/Memory.h
blob: f5cdd915a8ff19f772de22f7e4346d226f5e4d12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.


/*****************************************************************************
*** Platform checks for aligned malloc functions                           ***
*****************************************************************************/

#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H

// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
//   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
// This is true at least since glibc 2.8.
// This leaves the question how to detect 64-bit. According to this document,
//   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
 && defined(__LP64__)
  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
#else
  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
#endif

// FreeBSD 6 seems to have 16-byte aligned malloc
//   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
//   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif

#if defined(__APPLE__) \
 || defined(_WIN64) \
 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
#endif

#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
 && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
  #define EIGEN_HAS_POSIX_MEMALIGN 1
#else
  #define EIGEN_HAS_POSIX_MEMALIGN 0
#endif

#ifdef EIGEN_VECTORIZE_SSE
  #define EIGEN_HAS_MM_MALLOC 1
#else
  #define EIGEN_HAS_MM_MALLOC 0
#endif

/*****************************************************************************
*** Implementation of handmade aligned functions                           ***
*****************************************************************************/

/* ----- Hand made implementations of aligned malloc/free and realloc ----- */

/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
  * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
  */
inline void* ei_handmade_aligned_malloc(size_t size)
{
  void *original = std::malloc(size+16);
  if (original == 0) return 0;
  void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
  *(reinterpret_cast<void**>(aligned) - 1) = original;
  return aligned;
}

/** \internal Frees memory allocated with ei_handmade_aligned_malloc */
inline void ei_handmade_aligned_free(void *ptr)
{
  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
}

/** \internal
  * \brief Reallocates aligned memory.
  * Since we know that our handmade version is based on std::realloc
  * we can use std::realloc to implement efficient reallocation.
  */
inline void* ei_handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
{
  if (ptr == 0) return ei_handmade_aligned_malloc(size);
  void *original = *(reinterpret_cast<void**>(ptr) - 1);
  original = std::realloc(original,size+16);
  if (original == 0) return 0;
  void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
  *(reinterpret_cast<void**>(aligned) - 1) = original;
  return aligned;
}

/*****************************************************************************
*** Implementation of generic aligned realloc (when no realloc can be used)***
*****************************************************************************/

void* ei_aligned_malloc(size_t size);
void  ei_aligned_free(void *ptr);

/** \internal
  * \brief Reallocates aligned memory.
  * Allows reallocation with aligned ptr types. This implementation will
  * always create a new memory chunk and copy the old data.
  */
inline void* ei_generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
{
  if (ptr==0)
    return ei_aligned_malloc(size);

  if (size==0)
  {
    ei_aligned_free(ptr);
    return 0;
  }

  void* newptr = ei_aligned_malloc(size);
  if (newptr == 0)
  {
    errno = ENOMEM; // according to the standard
    return 0;
  }

  if (ptr != 0)
  {
    std::memcpy(newptr, ptr, std::min(size,old_size));
    ei_aligned_free(ptr);
  }

  return newptr;
}

/*****************************************************************************
*** Implementation of portable aligned versions of malloc/free/realloc     ***
*****************************************************************************/

/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
  * On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
  */
inline void* ei_aligned_malloc(size_t size)
{
  #ifdef EIGEN_NO_MALLOC
    ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
  #endif

  void *result;
  #if !EIGEN_ALIGN
    result = std::malloc(size);
  #elif EIGEN_MALLOC_ALREADY_ALIGNED
    result = std::malloc(size);
  #elif EIGEN_HAS_POSIX_MEMALIGN
    if(posix_memalign(&result, 16, size)) result = 0;
  #elif EIGEN_HAS_MM_MALLOC
    result = _mm_malloc(size, 16);
  #elif (defined _MSC_VER)
    result = _aligned_malloc(size, 16);
  #else
    result = ei_handmade_aligned_malloc(size);
  #endif

  #ifdef EIGEN_EXCEPTIONS
    if(result == 0)
      throw std::bad_alloc();
  #endif
  return result;
}

/** \internal Frees memory allocated with ei_aligned_malloc. */
inline void ei_aligned_free(void *ptr)
{
  #if !EIGEN_ALIGN
    std::free(ptr);
  #elif EIGEN_MALLOC_ALREADY_ALIGNED
    std::free(ptr);
  #elif EIGEN_HAS_POSIX_MEMALIGN
    std::free(ptr);
  #elif EIGEN_HAS_MM_MALLOC
    _mm_free(ptr);
  #elif defined(_MSC_VER)
    _aligned_free(ptr);
  #else
    ei_handmade_aligned_free(ptr);
  #endif
}

/**
* \internal
* \brief Reallocates an aligned block of memory.
* \throws std::bad_alloc if EIGEN_EXCEPTIONS are defined.
**/
inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size)
{
  (void)old_size; // Suppress 'unused variable' warning. Seen in boost tee.

  void *result;
#if !EIGEN_ALIGN
  result = std::realloc(ptr,new_size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
  result = std::realloc(ptr,new_size);
#elif EIGEN_HAS_POSIX_MEMALIGN
  result = ei_generic_aligned_realloc(ptr,new_size,old_size);
#elif EIGEN_HAS_MM_MALLOC
  // The defined(_mm_free) is just here to verify that this MSVC version
  // implements _mm_malloc/_mm_free based on the corresponding _aligned_
  // functions. This may not always be the case and we just try to be safe.
  #if defined(_MSC_VER) && defined(_mm_free)
    result = _aligned_realloc(ptr,new_size,16);
  #else
    result = ei_generic_aligned_realloc(ptr,new_size,old_size);
  #endif
#elif defined(_MSC_VER)
  result = _aligned_realloc(ptr,new_size,16);
#else
  result = ei_handmade_aligned_realloc(ptr,new_size,old_size);
#endif

#ifdef EIGEN_EXCEPTIONS
  if (result==0 && new_size!=0)
    throw std::bad_alloc();
#endif
  return result;
}

/*****************************************************************************
*** Implementation of conditionally aligned functions                      ***
*****************************************************************************/

/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
  * On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
  */
template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
{
  return ei_aligned_malloc(size);
}

template<> inline void* ei_conditional_aligned_malloc<false>(size_t size)
{
  #ifdef EIGEN_NO_MALLOC
    ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
  #endif

  void *result = std::malloc(size);
  #ifdef EIGEN_EXCEPTIONS
    if(!result) throw std::bad_alloc();
  #endif
  return result;
}

/** \internal Frees memory allocated with ei_conditional_aligned_malloc */
template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
{
  ei_aligned_free(ptr);
}

template<> inline void ei_conditional_aligned_free<false>(void *ptr)
{
  std::free(ptr);
}

template<bool Align> inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
{
  return ei_aligned_realloc(ptr, new_size, old_size);
}

template<> inline void* ei_conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
{
  return std::realloc(ptr, new_size);
}

/*****************************************************************************
*** Construction/destruction of array elements                             ***
*****************************************************************************/

/** \internal Constructs the elements of an array.
  * The \a size parameter tells on how many objects to call the constructor of T.
  */
template<typename T> inline T* ei_construct_elements_of_array(T *ptr, size_t size)
{
  for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
  return ptr;
}

/** \internal Destructs the elements of an array.
  * The \a size parameters tells on how many objects to call the destructor of T.
  */
template<typename T> inline void ei_destruct_elements_of_array(T *ptr, size_t size)
{
  // always destruct an array starting from the end.
  while(size) ptr[--size].~T();
}

/*****************************************************************************
*** Implementation of aligned new/delete-like functions                    ***
*****************************************************************************/

/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
  * On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
  * The default constructor of T is called.
  */
template<typename T> inline T* ei_aligned_new(size_t size)
{
  T *result = reinterpret_cast<T*>(ei_aligned_malloc(sizeof(T)*size));
  return ei_construct_elements_of_array(result, size);
}

template<typename T, bool Align> inline T* ei_conditional_aligned_new(size_t size)
{
  T *result = reinterpret_cast<T*>(ei_conditional_aligned_malloc<Align>(sizeof(T)*size));
  return ei_construct_elements_of_array(result, size);
}

/** \internal Deletes objects constructed with ei_aligned_new
  * The \a size parameters tells on how many objects to call the destructor of T.
  */
template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
{
  ei_destruct_elements_of_array<T>(ptr, size);
  ei_aligned_free(ptr);
}

/** \internal Deletes objects constructed with ei_conditional_aligned_new
  * The \a size parameters tells on how many objects to call the destructor of T.
  */
template<typename T, bool Align> inline void ei_conditional_aligned_delete(T *ptr, size_t size)
{
  ei_destruct_elements_of_array<T>(ptr, size);
  ei_conditional_aligned_free<Align>(ptr);
}

template<typename T, bool Align> inline T* ei_conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
{
  T *result = reinterpret_cast<T*>(ei_conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
  if (new_size > old_size)
    ei_construct_elements_of_array(result+old_size, new_size-old_size);
  return result;
}

/****************************************************************************/

/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
  *
  * \param array the address of the start of the array
  * \param size the size of the array
  *
  * \note If no element of the array is well aligned, the size of the array is returned. Typically,
  * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
  * packet size for the given scalar type is 1, then everything is considered well-aligned.
  *
  * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
  * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
  * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
  * example with Scalar=double on certain 32-bit platforms, see bug #79.
  *
  * There is also the variant ei_first_aligned(const MatrixBase&, Integer) defined in Coeffs.h.
  */
template<typename Scalar, typename Integer>
inline static Integer ei_first_aligned(const Scalar* array, Integer size)
{
  typedef typename ei_packet_traits<Scalar>::type Packet;
  enum { PacketSize = ei_packet_traits<Scalar>::size,
         PacketAlignedMask = PacketSize-1
  };

  if(PacketSize==1)
  {
    // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
    // of the array have the same alignment.
    return 0;
  }
  else if(size_t(array) & (sizeof(Scalar)-1))
  {
    // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
    // Consequently, no element of the array is well aligned.
    return size;
  }
  else
  {
    return std::min<Integer>( (PacketSize - (Integer((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
                           & PacketAlignedMask, size);
  }
}

/*****************************************************************************
*** Implementation of runtime stack allocation (falling back to malloc)    ***
*****************************************************************************/

/** \internal
  * Allocates an aligned buffer of SIZE bytes on the stack if SIZE is smaller than
  * EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
  * (currently, this is Linux only). Otherwise the memory is allocated on the heap.
  * Data allocated with ei_aligned_stack_alloc \b must be freed by calling
  * ei_aligned_stack_free(PTR,SIZE).
  * \code
  * float * data = ei_aligned_stack_alloc(float,array.size());
  * // ...
  * ei_aligned_stack_free(data,float,array.size());
  * \endcode
  */
#if (defined __linux__)
  #define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
                                    ? alloca(SIZE) \
                                    : ei_aligned_malloc(SIZE)
  #define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR)
#elif defined(_MSC_VER)
  #define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
                                    ? _alloca(SIZE) \
                                    : ei_aligned_malloc(SIZE)
  #define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR)
#else
  #define ei_aligned_stack_alloc(SIZE) ei_aligned_malloc(SIZE)
  #define ei_aligned_stack_free(PTR,SIZE) ei_aligned_free(PTR)
#endif

#define ei_aligned_stack_new(TYPE,SIZE) ei_construct_elements_of_array(reinterpret_cast<TYPE*>(ei_aligned_stack_alloc(sizeof(TYPE)*SIZE)), SIZE)
#define ei_aligned_stack_delete(TYPE,PTR,SIZE) do {ei_destruct_elements_of_array<TYPE>(PTR, SIZE); \
                                                   ei_aligned_stack_free(PTR,sizeof(TYPE)*SIZE);} while(0)


/*****************************************************************************
*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
*****************************************************************************/

#if EIGEN_ALIGN
  #ifdef EIGEN_EXCEPTIONS
    #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
      void* operator new(size_t size, const std::nothrow_t&) throw() { \
        try { return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); } \
        catch (...) { return 0; } \
        return 0; \
      }
  #else
    #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
      void* operator new(size_t size, const std::nothrow_t&) throw() { \
        return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
      }
  #endif

  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
      void *operator new(size_t size) { \
        return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
      } \
      void *operator new[](size_t size) { \
        return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
      } \
      void operator delete(void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \
      void operator delete[](void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \
      /* in-place new and delete. since (at least afaik) there is no actual   */ \
      /* memory allocated we can safely let the default implementation handle */ \
      /* this particular case. */ \
      static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
      void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
      /* nothrow-new (returns zero instead of std::bad_alloc) */ \
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
      void operator delete(void *ptr, const std::nothrow_t&) throw() { \
        Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); \
      } \
      typedef void ei_operator_new_marker_type;
#else
  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#endif

#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))

/****************************************************************************/

/** \class aligned_allocator
*
* \brief STL compatible allocator to use with with 16 byte aligned types
*
* Example:
* \code
* // Matrix4f requires 16 bytes alignment:
* std::map< int, Matrix4f, std::less<int>, aligned_allocator<Matrix4f> > my_map_mat4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::map< int, Vector3f > my_map_vec3;
* \endcode
*
*/
template<class T>
class aligned_allocator
{
public:
    typedef size_t    size_type;
    typedef std::ptrdiff_t difference_type;
    typedef T*        pointer;
    typedef const T*  const_pointer;
    typedef T&        reference;
    typedef const T&  const_reference;
    typedef T         value_type;

    template<class U>
    struct rebind
    {
        typedef aligned_allocator<U> other;
    };

    pointer address( reference value ) const
    {
        return &value;
    }

    const_pointer address( const_reference value ) const
    {
        return &value;
    }

    aligned_allocator() throw()
    {
    }

    aligned_allocator( const aligned_allocator& ) throw()
    {
    }

    template<class U>
    aligned_allocator( const aligned_allocator<U>& ) throw()
    {
    }

    ~aligned_allocator() throw()
    {
    }

    size_type max_size() const throw()
    {
        return std::numeric_limits<size_type>::max();
    }

    pointer allocate( size_type num, const_pointer* hint = 0 )
    {
        static_cast<void>( hint ); // suppress unused variable warning
        return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) );
    }

    void construct( pointer p, const T& value )
    {
        ::new( p ) T( value );
    }

    void destroy( pointer p )
    {
        p->~T();
    }

    void deallocate( pointer p, size_type /*num*/ )
    {
        ei_aligned_free( p );
    }

    bool operator!=(const aligned_allocator<T>& ) const
    { return false; }

    bool operator==(const aligned_allocator<T>& ) const
    { return true; }
};

#endif // EIGEN_MEMORY_H