1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
#ifdef EIGEN_VECTORIZE
// it seems we cannot assume posix_memalign is defined in the stdlib header
extern "C" int posix_memalign (void **, size_t, size_t) throw ();
#endif
/** \internal
* Static array automatically aligned if the total byte size is a multiple of 16
*/
template <typename T, int Size, bool Align> struct ei_aligned_array
{
EIGEN_ALIGN_128 T array[Size];
ei_aligned_array()
{
ei_assert((reinterpret_cast<size_t>(array) & 0xf) == 0
&& "this assertion is explained here: http://eigen.tuxfamily.org/api/UnalignedArrayAssert.html **** READ THIS WEB PAGE !!! ****");
}
};
template <typename T, int Size> struct ei_aligned_array<T,Size,false>
{
T array[Size];
};
/** \internal allocates \a size * sizeof(\a T) bytes with 16 bytes alignment */
template<typename T>
inline T* ei_aligned_malloc(size_t size)
{
#ifdef EIGEN_VECTORIZE
if (ei_packet_traits<T>::size>1)
{
void* ptr;
if (posix_memalign(&ptr, 16, size*sizeof(T))==0)
return static_cast<T*>(ptr);
else
return 0;
}
else
#endif
return new T[size];
}
/** \internal free memory allocated with ei_aligned_malloc */
template<typename T>
inline void ei_aligned_free(T* ptr)
{
#ifdef EIGEN_VECTORIZE
if (ei_packet_traits<T>::size>1)
free(ptr);
else
#endif
delete[] ptr;
}
/** \internal \returns the number of elements which have to be skipped such that data are 16 bytes aligned */
template<typename Scalar>
inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
{
typedef typename ei_packet_traits<Scalar>::type Packet;
const int PacketSize = ei_packet_traits<Scalar>::size;
const int PacketAlignedMask = PacketSize-1;
const bool Vectorized = PacketSize>1;
return Vectorized
? std::min<int>( (PacketSize - ((size_t(ptr)/sizeof(Scalar)) & PacketAlignedMask))
& PacketAlignedMask, maxOffset)
: 0;
}
/** \internal
* ei_alloc_stack(TYPE,SIZE) allocates sizeof(TYPE)*SIZE bytes on the stack if sizeof(TYPE)*SIZE is
* smaller than EIGEN_STACK_ALLOCATION_LIMIT. Otherwise the memory is allocated using the operator new.
* Data allocated with ei_alloc_stack \b must be freed by calling ei_free_stack(PTR,TYPE,SIZE).
* \code
* float * data = ei_alloc_stack(float,array.size());
* // ...
* ei_free_stack(data,float,array.size());
* \endcode
*/
#ifdef __linux__
# define ei_alloc_stack(TYPE,SIZE) ((sizeof(TYPE)*(SIZE)>16000000) ? new TYPE[SIZE] : (TYPE*)alloca(sizeof(TYPE)*(SIZE)))
# define ei_free_stack(PTR,TYPE,SIZE) if (sizeof(TYPE)*SIZE>16000000) delete[] PTR
#else
# define ei_alloc_stack(TYPE,SIZE) new TYPE[SIZE]
# define ei_free_stack(PTR,TYPE,SIZE) delete[] PTR
#endif
/** \class WithAlignedOperatorNew
*
* \brief Enforces instances of inherited classes to be 16 bytes aligned when allocated with operator new
*
* When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned
* on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.:
* - Vector2d, Vector4f, Vector4i, Vector4d,
* - Matrix2d, Matrix4f, Matrix4i, Matrix4d,
* - etc.
* When an object is statically allocated, the compiler will automatically and always enforces 16 bytes
* alignment of the data when needed. However some troubles might appear when data are dynamically allocated.
* Let's pick an example:
* \code
* struct Foo {
* char dummy;
* Vector4f some_vector;
* };
* Foo obj1; // static allocation
* obj1.some_vector = Vector4f(..); // => OK
*
* Foo *pObj2 = new Foo; // dynamic allocation
* pObj2->some_vector = Vector4f(..); // => !! might segfault !!
* \endcode
* Here, the problem is that operator new is not aware of the compile time alignment requirement of the
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by
* overloading the operator new to return aligned data when the vectorization is enabled.
* Here is a similar safe example:
* \code
* struct Foo : WithAlignedOperatorNew {
* char dummy;
* Vector4f some_vector;
* };
* Foo *pObj2 = new Foo; // dynamic allocation
* pObj2->some_vector = Vector4f(..); // => SAFE !
* \endcode
*
* \sa class ei_new_allocator
*/
struct WithAlignedOperatorNew
{
#ifdef EIGEN_VECTORIZE
void *operator new(size_t size) throw()
{
void* ptr = 0;
if (posix_memalign(&ptr, 16, size)==0)
return ptr;
else
return 0;
}
void *operator new[](size_t size) throw()
{
void* ptr = 0;
if (posix_memalign(&ptr, 16, size)==0)
return ptr;
else
return 0;
}
void operator delete(void * ptr) { free(ptr); }
void operator delete[](void * ptr) { free(ptr); }
#endif
};
template<typename T, int SizeAtCompileTime,
bool NeedsToAlign = (SizeAtCompileTime!=Dynamic) && ((sizeof(T)*SizeAtCompileTime)%16==0)>
struct ei_with_aligned_operator_new : WithAlignedOperatorNew {};
template<typename T, int SizeAtCompileTime>
struct ei_with_aligned_operator_new<T,SizeAtCompileTime,false> {};
/** \class ei_new_allocator
*
* \brief stl compatible allocator to use with with fixed-size vector and matrix types
*
* STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator,
* ei_new_allocator call operator new on the type \a T and not the general new operator ignoring
* overloaded version of operator new.
*
* Example:
* \code
* // Vector4f requires 16 bytes alignment:
* std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::vector<Vector3f> dataVec3;
*
* struct Foo : WithAlignedOperatorNew {
* char dummy;
* Vector4f some_vector;
* };
* std::vector<Foo,ei_new_allocator<Foo> > dataFoo;
* \endcode
*
* \sa class WithAlignedOperatorNew
*/
template<typename T> class ei_new_allocator
{
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
template<typename OtherType>
struct rebind
{ typedef ei_new_allocator<OtherType> other; };
T* address(T& ref) const { return &ref; }
const T* address(const T& ref) const { return &ref; }
T* allocate(size_t size, const void* = 0) { return new T[size]; }
void deallocate(T* ptr, size_t) { delete[] ptr; }
size_t max_size() const { return size_t(-1) / sizeof(T); }
// FIXME I'm note sure about this construction...
void construct(T* ptr, const T& refObj) { ::new(ptr) T(refObj); }
void destroy(T* ptr) { ptr->~T(); }
};
#endif // EIGEN_MEMORY_H
|