1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FORWARDDECLARATIONS_H
#define EIGEN_FORWARDDECLARATIONS_H
namespace Eigen {
namespace internal {
template<typename T> struct traits;
// here we say once and for all that traits<const T> == traits<T>
// When constness must affect traits, it has to be constness on template parameters on which T itself depends.
// For example, traits<Map<const T> > != traits<Map<T> >, but
// traits<const Map<T> > == traits<Map<T> >
template<typename T> struct traits<const T> : traits<T> {};
template<typename Derived> struct has_direct_access
{
enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
};
template<typename Derived> struct accessors_level
{
enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
: (has_write_access ? WriteAccessors : ReadOnlyAccessors)
};
};
template<typename T> struct evaluator_traits;
template< typename T> struct evaluator;
} // end namespace internal
template<typename T> struct NumTraits;
template<typename Derived> struct EigenBase;
template<typename Derived> class DenseBase;
template<typename Derived> class PlainObjectBase;
template<typename Derived,
int Level = internal::accessors_level<Derived>::value >
class DenseCoeffsBase;
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: Eigen::ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows,
int _MaxCols = _Cols
> class Matrix;
template<typename Derived> class MatrixBase;
template<typename Derived> class ArrayBase;
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
template<typename ExpressionType> class NestByValue;
template<typename ExpressionType> class ForceAlignedAccess;
template<typename ExpressionType> class SwapWrapper;
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
template<typename MatrixType, int Size=Dynamic> class VectorBlock;
template<typename MatrixType> class Transpose;
template<typename MatrixType> class Conjugate;
template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp; // TODO deprecated
template<typename Derived, typename Lhs, typename Rhs> class ProductBase; // TODO deprecated
template<typename Decomposition, typename Rhstype> class Solve;
template<typename XprType> class Inverse;
namespace internal {
template<typename Lhs, typename Rhs> struct product_tag;
}
template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
template<typename Lhs, typename Rhs, int Mode> class GeneralProduct; // TODO deprecated
template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct; // TODO deprecated
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
template<typename MatrixType, int Index = 0> class Diagonal;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
template<typename Derived> class PermutationBase;
template<typename Derived> class TranspositionsBase;
template<typename _IndicesType> class PermutationWrapper;
template<typename _IndicesType> class TranspositionsWrapper;
template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
> class MapBase;
template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
template<int Value = Dynamic> class InnerStride;
template<int Value = Dynamic> class OuterStride;
template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
template<typename Derived> class RefBase;
template<typename PlainObjectType, int Options = 0,
typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
template<typename Derived> class TriangularBase;
template<typename MatrixType, unsigned int Mode> class TriangularView;
template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
template<typename MatrixType> class SparseView;
template<typename ExpressionType> class WithFormat;
template<typename MatrixType> struct CommaInitializer;
template<typename Derived> class ReturnByValue;
template<typename ExpressionType> class ArrayWrapper;
template<typename ExpressionType> class MatrixWrapper;
namespace internal {
template<typename DecompositionType> struct kernel_retval_base;
template<typename DecompositionType> struct kernel_retval;
template<typename DecompositionType> struct image_retval_base;
template<typename DecompositionType> struct image_retval;
} // end namespace internal
namespace internal {
template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
}
namespace internal {
template<typename Lhs, typename Rhs> struct product_type;
/** \internal
* \class product_evaluator
* Products need their own evaluator with more template arguments allowing for
* easier partial template specializations.
*/
template< typename T,
int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret,
typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
typename RhsScalar = typename traits<typename T::Rhs>::Scalar
> struct product_evaluator;
}
template<typename Lhs, typename Rhs,
int ProductType = internal::product_type<Lhs,Rhs>::value>
struct ProductReturnType;
// this is a workaround for sun CC
template<typename Lhs, typename Rhs> struct LazyProductReturnType;
namespace internal {
// Provides scalar/packet-wise product and product with accumulation
// with optional conjugation of the arguments.
template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
template<typename Scalar> struct scalar_sum_op;
template<typename Scalar> struct scalar_difference_op;
template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op;
template<typename Scalar> struct scalar_opposite_op;
template<typename Scalar> struct scalar_conjugate_op;
template<typename Scalar> struct scalar_real_op;
template<typename Scalar> struct scalar_imag_op;
template<typename Scalar> struct scalar_abs_op;
template<typename Scalar> struct scalar_abs2_op;
template<typename Scalar> struct scalar_sqrt_op;
template<typename Scalar> struct scalar_exp_op;
template<typename Scalar> struct scalar_log_op;
template<typename Scalar> struct scalar_cos_op;
template<typename Scalar> struct scalar_sin_op;
template<typename Scalar> struct scalar_acos_op;
template<typename Scalar> struct scalar_asin_op;
template<typename Scalar> struct scalar_tan_op;
template<typename Scalar> struct scalar_pow_op;
template<typename Scalar> struct scalar_inverse_op;
template<typename Scalar> struct scalar_square_op;
template<typename Scalar> struct scalar_cube_op;
template<typename Scalar, typename NewType> struct scalar_cast_op;
template<typename Scalar> struct scalar_multiple_op;
template<typename Scalar> struct scalar_quotient1_op;
template<typename Scalar> struct scalar_min_op;
template<typename Scalar> struct scalar_max_op;
template<typename Scalar> struct scalar_random_op;
template<typename Scalar> struct scalar_add_op;
template<typename Scalar> struct scalar_constant_op;
template<typename Scalar> struct scalar_identity_op;
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op;
} // end namespace internal
struct IOFormat;
// Array module
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: Eigen::ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
template<typename ExpressionType, int Direction> class VectorwiseOp;
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
template<typename MatrixType, int Direction = BothDirections> class Reverse;
template<typename MatrixType> class FullPivLU;
template<typename MatrixType> class PartialPivLU;
namespace internal {
template<typename MatrixType> struct inverse_impl;
}
template<typename MatrixType> class HouseholderQR;
template<typename MatrixType> class ColPivHouseholderQR;
template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
template<typename Scalar> class JacobiRotation;
// Geometry module:
template<typename Derived, int _Dim> class RotationBase;
template<typename Lhs, typename Rhs> class Cross;
template<typename Derived> class QuaternionBase;
template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
template<typename Derived> class MatrixFunctionReturnValue;
template<typename Derived> class MatrixSquareRootReturnValue;
template<typename Derived> class MatrixLogarithmReturnValue;
template<typename Derived> class MatrixPowerReturnValue;
template<typename Derived> class MatrixComplexPowerReturnValue;
namespace internal {
template <typename Scalar>
struct stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
}
} // end namespace Eigen
#endif // EIGEN_FORWARDDECLARATIONS_H
|