aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/util/BlasUtil.h
blob: cd0ed0edeaf092289441186313d5920cdc936c8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_BLASUTIL_H
#define EIGEN_BLASUTIL_H

// This file contains many lightweight helper classes used to
// implement and control fast level 2 and level 3 BLAS-like routines.

// forward declarations

// Provides scalar/packet-wise product and product with accumulation
// with optional conjugation of the arguments.
template<bool ConjLhs, bool ConjRhs> struct ei_conj_helper;

template<typename Scalar, typename Index, int mr, int nr, typename Conj = ei_conj_helper<false,false> >
struct ei_gebp_kernel;

template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
struct ei_gemm_pack_rhs;

template<typename Scalar, typename Index, int mr, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
struct ei_gemm_pack_lhs;

template<
  typename Scalar, typename Index,
  int LhsStorageOrder, bool ConjugateLhs,
  int RhsStorageOrder, bool ConjugateRhs,
  int ResStorageOrder>
struct ei_general_matrix_matrix_product;

template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename RhsType>
static void ei_cache_friendly_product_colmajor_times_vector(
  Index size, const Scalar* lhs, Index lhsStride, const RhsType& rhs, Scalar* res, Scalar alpha);

template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename ResType>
static void ei_cache_friendly_product_rowmajor_times_vector(
  const Scalar* lhs, Index lhsStride, const Scalar* rhs, Index rhsSize, ResType& res, Scalar alpha);

template<> struct ei_conj_helper<false,false>
{
  template<typename T>
  EIGEN_STRONG_INLINE T pmadd(const T& x, const T& y, const T& c) const { return  ei_pmadd(x,y,c); }
  template<typename T>
  EIGEN_STRONG_INLINE T pmul(const T& x, const T& y) const { return  ei_pmul(x,y); }
};

template<> struct ei_conj_helper<false,true>
{
  template<typename T> std::complex<T>
  pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
  { return c + pmul(x,y); }

  template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
  { return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_imag(x)*ei_real(y) - ei_real(x)*ei_imag(y)); }
};

template<> struct ei_conj_helper<true,false>
{
  template<typename T> std::complex<T>
  pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
  { return c + pmul(x,y); }

  template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
  { return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
};

template<> struct ei_conj_helper<true,true>
{
  template<typename T> std::complex<T>
  pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
  { return c + pmul(x,y); }

  template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
  { return std::complex<T>(ei_real(x)*ei_real(y) - ei_imag(x)*ei_imag(y), - ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
};

// Lightweight helper class to access matrix coefficients.
// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
// and so I hope better compilation performance (time and code quality).
template<typename Scalar, typename Index, int StorageOrder>
class ei_blas_data_mapper
{
  public:
    ei_blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
    EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
    { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
  protected:
    Scalar* EIGEN_RESTRICT m_data;
    Index m_stride;
};

// lightweight helper class to access matrix coefficients (const version)
template<typename Scalar, typename Index, int StorageOrder>
class ei_const_blas_data_mapper
{
  public:
    ei_const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
    EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
    { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
  protected:
    const Scalar* EIGEN_RESTRICT m_data;
    Index m_stride;
};

// Defines various constant controlling register blocking for matrix-matrix algorithms.
template<typename Scalar>
struct ei_product_blocking_traits
{
  typedef typename ei_packet_traits<Scalar>::type PacketType;
  enum {
    PacketSize = sizeof(PacketType)/sizeof(Scalar),
    NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,

    // register block size along the N direction (must be either 2 or 4)
    nr = NumberOfRegisters/4,

    // register block size along the M direction (currently, this one cannot be modified)
    mr = 2 * PacketSize
  };
};

template<typename Real>
struct ei_product_blocking_traits<std::complex<Real> >
{
  typedef std::complex<Real> Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketType;
  enum {
    PacketSize = sizeof(PacketType)/sizeof(Scalar),
    nr = 2,
    mr = 2 * PacketSize
  };
};

/* Helper class to analyze the factors of a Product expression.
 * In particular it allows to pop out operator-, scalar multiples,
 * and conjugate */
template<typename XprType> struct ei_blas_traits
{
  typedef typename ei_traits<XprType>::Scalar Scalar;
  typedef const XprType& ExtractType;
  typedef XprType _ExtractType;
  enum {
    IsComplex = NumTraits<Scalar>::IsComplex,
    IsTransposed = false,
    NeedToConjugate = false,
    HasUsableDirectAccess = (    (int(XprType::Flags)&DirectAccessBit)
                     && (  /* Uncomment this when the low-level matrix-vector product functions support strided vectors
                           bool(XprType::IsVectorAtCompileTime)
                         ||  */
                           int(ei_inner_stride_at_compile_time<XprType>::ret) == 1)
                   ) ?  1 : 0
  };
  typedef typename ei_meta_if<bool(HasUsableDirectAccess),
    ExtractType,
    typename _ExtractType::PlainObject
    >::ret DirectLinearAccessType;
  static inline ExtractType extract(const XprType& x) { return x; }
  static inline Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
};

// pop conjugate
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> >
 : ei_blas_traits<NestedXpr>
{
  typedef ei_blas_traits<NestedXpr> Base;
  typedef CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> XprType;
  typedef typename Base::ExtractType ExtractType;

  enum {
    IsComplex = NumTraits<Scalar>::IsComplex,
    NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
  };
  static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
  static inline Scalar extractScalarFactor(const XprType& x) { return ei_conj(Base::extractScalarFactor(x.nestedExpression())); }
};

// pop scalar multiple
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> >
 : ei_blas_traits<NestedXpr>
{
  typedef ei_blas_traits<NestedXpr> Base;
  typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> XprType;
  typedef typename Base::ExtractType ExtractType;
  static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
  static inline Scalar extractScalarFactor(const XprType& x)
  { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
};

// pop opposite
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
 : ei_blas_traits<NestedXpr>
{
  typedef ei_blas_traits<NestedXpr> Base;
  typedef CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> XprType;
  typedef typename Base::ExtractType ExtractType;
  static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
  static inline Scalar extractScalarFactor(const XprType& x)
  { return - Base::extractScalarFactor(x.nestedExpression()); }
};

// pop/push transpose
template<typename NestedXpr>
struct ei_blas_traits<Transpose<NestedXpr> >
 : ei_blas_traits<NestedXpr>
{
  typedef typename NestedXpr::Scalar Scalar;
  typedef ei_blas_traits<NestedXpr> Base;
  typedef Transpose<NestedXpr> XprType;
  typedef Transpose<typename Base::_ExtractType>  ExtractType;
  typedef Transpose<typename Base::_ExtractType> _ExtractType;
  typedef typename ei_meta_if<bool(Base::HasUsableDirectAccess),
    ExtractType,
    typename ExtractType::PlainObject
    >::ret DirectLinearAccessType;
  enum {
    IsTransposed = Base::IsTransposed ? 0 : 1
  };
  static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
  static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
};

template<typename T, bool HasUsableDirectAccess=ei_blas_traits<T>::HasUsableDirectAccess>
struct ei_extract_data_selector {
  static const typename T::Scalar* run(const T& m)
  {
    return &ei_blas_traits<T>::extract(m).const_cast_derived().coeffRef(0,0); // FIXME this should be .data()
  }
};

template<typename T>
struct ei_extract_data_selector<T,false> {
  static typename T::Scalar* run(const T&) { return 0; }
};

template<typename T> const typename T::Scalar* ei_extract_data(const T& m)
{
  return ei_extract_data_selector<T>::run(m);
}

#endif // EIGEN_BLASUTIL_H