aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/products/TriangularMatrixMatrix.h
blob: cef5eeba185ea3f623ed68f9cd6397eabdc50a60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H

// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
// struct ei_gemm_pack_lhs_triangular
// {
//   Matrix<Scalar,mr,mr,
//   void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* _lhs, int lhsStride, int depth, int rows)
//   {
//     ei_conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
//     ei_const_blas_data_mapper<Scalar, StorageOrder> lhs(_lhs,lhsStride);
//     int count = 0;
//     const int peeled_mc = (rows/mr)*mr;
//     for(int i=0; i<peeled_mc; i+=mr)
//     {
//       for(int k=0; k<depth; k++)
//         for(int w=0; w<mr; w++)
//           blockA[count++] = cj(lhs(i+w, k));
//     }
//     for(int i=peeled_mc; i<rows; i++)
//     {
//       for(int k=0; k<depth; k++)
//         blockA[count++] = cj(lhs(i, k));
//     }
//   }
// };

/* Optimized triangular matrix * matrix (_TRMM++) product built on top of
 * the general matrix matrix product.
 */
template <typename Scalar, typename Index,
          int Mode, bool LhsIsTriangular,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs,
          int ResStorageOrder>
struct ei_product_triangular_matrix_matrix;

template <typename Scalar, typename Index,
          int Mode, bool LhsIsTriangular,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Index,Mode,LhsIsTriangular,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,RowMajor>
{
  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols, Index depth,
    const Scalar* lhs, Index lhsStride,
    const Scalar* rhs, Index rhsStride,
    Scalar* res,       Index resStride,
    Scalar alpha)
  {
    ei_product_triangular_matrix_matrix<Scalar, Index,
      (Mode&(UnitDiag|ZeroDiag)) | ((Mode&Upper) ? Lower : Upper),
      (!LhsIsTriangular),
      RhsStorageOrder==RowMajor ? ColMajor : RowMajor,
      ConjugateRhs,
      LhsStorageOrder==RowMajor ? ColMajor : RowMajor,
      ConjugateLhs,
      ColMajor>
      ::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
  }
};

// implements col-major += alpha * op(triangular) * op(general)
template <typename Scalar, typename Index, int Mode,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Index,Mode,true,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols, Index depth,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    ei_const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    ei_const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    typedef ei_gebp_traits<Scalar,Scalar> Traits;
    enum {
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower,
      SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
    };

    Index kc = depth; // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);

    Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
    Scalar* blockB = allocatedBlockB + sizeW;

    Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
    triangularBuffer.setZero();
    if((Mode&ZeroDiag)==ZeroDiag)
      triangularBuffer.diagonal().setZero();
    else
      triangularBuffer.diagonal().setOnes();

    ei_gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    ei_gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    ei_gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;

    for(Index k2=IsLower ? depth : 0;
        IsLower ? k2>0 : k2<depth;
        IsLower ? k2-=kc : k2+=kc)
    {
      Index actual_kc = std::min(IsLower ? k2 : depth-k2, kc);
      Index actual_k2 = IsLower ? k2-actual_kc : k2;

      // align blocks with the end of the triangular part for trapezoidal lhs
      if((!IsLower)&&(k2<rows)&&(k2+actual_kc>rows))
      {
        actual_kc = rows-k2;
        k2 = k2+actual_kc-kc;
      }

      pack_rhs(blockB, &rhs(actual_k2,0), rhsStride, actual_kc, cols);

      // the selected lhs's panel has to be split in three different parts:
      //  1 - the part which is above the diagonal block => skip it
      //  2 - the diagonal block => special kernel
      //  3 - the panel below the diagonal block => GEPP
      // the block diagonal, if any
      if(IsLower || actual_k2<rows)
      {
        // for each small vertical panels of lhs
        for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
          Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1;
          Index startBlock   = actual_k2+k1;
          Index blockBOffset = k1;

          // => GEBP with the micro triangular block
          // The trick is to pack this micro block while filling the opposite triangular part with zeros.
          // To this end we do an extra triangular copy to a small temporary buffer
          for (Index k=0;k<actualPanelWidth;++k)
          {
            if (SetDiag)
              triangularBuffer.coeffRef(k,k) = lhs(startBlock+k,startBlock+k);
            for (Index i=IsLower ? k+1 : 0; IsLower ? i<actualPanelWidth : i<k; ++i)
              triangularBuffer.coeffRef(i,k) = lhs(startBlock+i,startBlock+k);
          }
          pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.outerStride(), actualPanelWidth, actualPanelWidth);

          gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
                      actualPanelWidth, actual_kc, 0, blockBOffset);

          // GEBP with remaining micro panel
          if (lengthTarget>0)
          {
            Index startTarget  = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2;

            pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);

            gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
                        actualPanelWidth, actual_kc, 0, blockBOffset);
          }
        }
      }
      // the part below the diagonal => GEPP
      {
        Index start = IsLower ? k2 : 0;
        Index end   = IsLower ? rows : std::min(actual_k2,rows);
        for(Index i2=start; i2<end; i2+=mc)
        {
          const Index actual_mc = std::min(i2+mc,end)-i2;
          ei_gemm_pack_lhs<Scalar, Index, Traits::mr,Traits::LhsProgress, LhsStorageOrder,false>()
            (blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);

          gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
        }
      }
    }

    ei_aligned_stack_delete(Scalar, blockA, kc*mc);
    ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
//     delete[] allocatedBlockB;
  }
};

// implements col-major += alpha * op(general) * op(triangular)
template <typename Scalar, typename Index, int Mode,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Index,Mode,false,
                                           LhsStorageOrder,ConjugateLhs,
                                           RhsStorageOrder,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols, Index depth,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    Scalar alpha)
  {
    ei_const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
    ei_const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

    typedef ei_gebp_traits<Scalar,Scalar> Traits;
    enum {
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower,
      SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
    };

    Index kc = depth; // cache block size along the K direction
    Index mc = rows;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);

    Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar,sizeB);
    Scalar* blockB = allocatedBlockB + sizeW;

    Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
    triangularBuffer.setZero();
    if((Mode&ZeroDiag)==ZeroDiag)
      triangularBuffer.diagonal().setZero();
    else
      triangularBuffer.diagonal().setOnes();

    ei_gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    ei_gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    ei_gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    ei_gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;

    for(Index k2=IsLower ? 0 : depth;
        IsLower ? k2<depth  : k2>0;
        IsLower ? k2+=kc   : k2-=kc)
    {
      Index actual_kc = std::min(IsLower ? depth-k2 : k2, kc);
      Index actual_k2 = IsLower ? k2 : k2-actual_kc;

      // align blocks with the end of the triangular part for trapezoidal rhs
      if(IsLower && (k2<cols) && (actual_k2+actual_kc>cols))
      {
        actual_kc = cols-k2;
        k2 = actual_k2 + actual_kc - kc;
      }

      // remaining size
      Index rs = IsLower ? std::min(cols,actual_k2) : cols - k2;
      // size of the triangular part
      Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc;

      Scalar* geb = blockB+ts*ts;

      pack_rhs(geb, &rhs(actual_k2,IsLower ? 0 : k2), rhsStride, actual_kc, rs);

      // pack the triangular part of the rhs padding the unrolled blocks with zeros
      if(ts>0)
      {
        for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
          Index actual_j2 = actual_k2 + j2;
          Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
          Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
          // general part
          pack_rhs_panel(blockB+j2*actual_kc,
                         &rhs(actual_k2+panelOffset, actual_j2), rhsStride,
                         panelLength, actualPanelWidth,
                         actual_kc, panelOffset);

          // append the triangular part via a temporary buffer
          for (Index j=0;j<actualPanelWidth;++j)
          {
            if (SetDiag)
              triangularBuffer.coeffRef(j,j) = rhs(actual_j2+j,actual_j2+j);
            for (Index k=IsLower ? j+1 : 0; IsLower ? k<actualPanelWidth : k<j; ++k)
              triangularBuffer.coeffRef(k,j) = rhs(actual_j2+k,actual_j2+j);
          }

          pack_rhs_panel(blockB+j2*actual_kc,
                         triangularBuffer.data(), triangularBuffer.outerStride(),
                         actualPanelWidth, actualPanelWidth,
                         actual_kc, j2);
        }
      }

      for (Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = std::min(mc,rows-i2);
        pack_lhs(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);

        // triangular kernel
        if(ts>0)
        {
          for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
          {
            Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
            Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth;
            Index blockOffset = IsLower ? j2 : 0;

            gebp_kernel(res+i2+(actual_k2+j2)*resStride, resStride,
                        blockA, blockB+j2*actual_kc,
                        actual_mc, panelLength, actualPanelWidth,
                        alpha,
                        actual_kc, actual_kc,  // strides
                        blockOffset, blockOffset,// offsets
                        allocatedBlockB); // workspace
          }
        }
        gebp_kernel(res+i2+(IsLower ? 0 : k2)*resStride, resStride,
                    blockA, geb, actual_mc, actual_kc, rs,
                    alpha,
                    -1, -1, 0, 0, allocatedBlockB);
      }
    }

    ei_aligned_stack_delete(Scalar, blockA, kc*mc);
    ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
  }
};

/***************************************************************************
* Wrapper to ei_product_triangular_matrix_matrix
***************************************************************************/

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct ei_traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
  : ei_traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
{};

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
  : public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)

  TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    ei_product_triangular_matrix_matrix<Scalar, Index,
      Mode, LhsIsTriangular,
      (ei_traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
      (ei_traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
      (ei_traits<Dest          >::Flags&RowMajorBit) ? RowMajor : ColMajor>
      ::run(
        lhs.rows(), rhs.cols(), lhs.cols(),// LhsIsTriangular ? rhs.cols() : lhs.rows(),           // sizes
        &lhs.coeff(0,0),    lhs.outerStride(), // lhs info
        &rhs.coeff(0,0),    rhs.outerStride(), // rhs info
        &dst.coeffRef(0,0), dst.outerStride(), // result info
        actualAlpha                            // alpha
      );
  }
};

#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H