aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/products/SelfadjointMatrixVector.h
blob: 57f4b7da3d3d3450ef5bca127971818cc61db382 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H

namespace internal {

/* Optimized selfadjoint matrix * vector product:
 * This algorithm processes 2 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 2 and to reduce
 * the instruction dependency.
 */
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs>
static EIGEN_DONT_INLINE void product_selfadjoint_vector(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res, Scalar alpha)
{
  typedef typename packet_traits<Scalar>::type Packet;
  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum {
    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
    IsLower = UpLo == Lower ? 1 : 0,
    FirstTriangular = IsRowMajor == IsLower
  };

  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;

  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;

  Scalar cjAlpha = ConjugateRhs ? conj(alpha) : alpha;

  // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
  // this is because we need to extract packets
  const Scalar* EIGEN_RESTRICT rhs = _rhs;
  if (rhsIncr!=1)
  {
    Scalar* r = ei_aligned_stack_new(Scalar, size);
    const Scalar* it = _rhs;
    for (Index i=0; i<size; ++i, it+=rhsIncr)
      r[i] = *it;
    rhs = r;
  }

  Index bound = std::max(Index(0),size-8) & 0xfffffffe;
  if (FirstTriangular)
    bound = size - bound;

  for (Index j=FirstTriangular ? bound : 0;
       j<(FirstTriangular ? size : bound);j+=2)
  {
    register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
    register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;

    Scalar t0 = cjAlpha * rhs[j];
    Packet ptmp0 = pset1<Packet>(t0);
    Scalar t1 = cjAlpha * rhs[j+1];
    Packet ptmp1 = pset1<Packet>(t1);

    Scalar t2 = 0;
    Packet ptmp2 = pset1<Packet>(t2);
    Scalar t3 = 0;
    Packet ptmp3 = pset1<Packet>(t3);

    size_t starti = FirstTriangular ? 0 : j+2;
    size_t endi   = FirstTriangular ? j : size;
    size_t alignedEnd = starti;
    size_t alignedStart = (starti) + first_aligned(&res[starti], endi-starti);
    alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);

    res[j] += cj0.pmul(A0[j], t0);
    if(FirstTriangular)
    {
      res[j+1] += cj0.pmul(A1[j+1], t1);
      res[j]   += cj0.pmul(A1[j],   t1);
      t3       += cj1.pmul(A1[j],   rhs[j]);
    }
    else
    {
      res[j+1] += cj0.pmul(A0[j+1],t0) + cj0.pmul(A1[j+1],t1);
      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
    }

    for (size_t i=starti; i<alignedStart; ++i)
    {
      res[i] += t0 * A0[i] + t1 * A1[i];
      t2 += conj(A0[i]) * rhs[i];
      t3 += conj(A1[i]) * rhs[i];
    }
    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
    // gcc 4.2 does this optimization automatically.
    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
    for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
    {
      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
      Packet Xi  = pload <Packet>(resIt);

      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
      pstore(resIt,Xi); resIt += PacketSize;
    }
    for (size_t i=alignedEnd; i<endi; i++)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }

    res[j]   += alpha * (t2 + predux(ptmp2));
    res[j+1] += alpha * (t3 + predux(ptmp3));
  }
  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
  {
    register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;

    Scalar t1 = cjAlpha * rhs[j];
    Scalar t2 = 0;
    res[j] += cj0.pmul(A0[j],t1);
    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++) {
      res[i] += cj0.pmul(A0[i], t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
    }
    res[j] += alpha * t2;
  }

  if(rhsIncr!=1)
    ei_aligned_stack_delete(Scalar, const_cast<Scalar*>(rhs), size);
}

} // end namespace internal 

/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/

namespace internal {
template<typename Lhs, int LhsMode, typename Rhs>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
{};
}

template<typename Lhs, int LhsMode, typename Rhs>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    LhsUpLo = LhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    eigen_assert(dst.innerStride()==1 && "not implemented yet");

    internal::product_selfadjoint_vector<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
      (
        lhs.rows(),                           // size
        &lhs.coeff(0,0),  lhs.outerStride(),  // lhs info
        &rhs.coeff(0),    rhs.innerStride(),  // rhs info
        &dst.coeffRef(0),                     // result info
        actualAlpha                           // scale factor
      );
  }
};

namespace internal {
template<typename Lhs, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}

template<typename Lhs, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
  : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    RhsUpLo = RhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

    const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
    const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    eigen_assert(dst.innerStride()==1 && "not implemented yet");

    // transpose the product
    internal::product_selfadjoint_vector<Scalar, Index, (internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? ColMajor : RowMajor, int(RhsUpLo)==Upper ? Lower : Upper,
                                  bool(RhsBlasTraits::NeedToConjugate), bool(LhsBlasTraits::NeedToConjugate)>
      (
        rhs.rows(),                           // size
        &rhs.coeff(0,0),  rhs.outerStride(),  // lhs info
        &lhs.coeff(0),    lhs.innerStride(),  // rhs info
        &dst.coeffRef(0),                     // result info
        actualAlpha                           // scale factor
      );
  }
};


#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H