aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/products/GeneralMatrixVector.h
blob: b2a71bc6f9b52879ec08dbaf96259a07059d8b76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
#define EIGEN_GENERAL_MATRIX_VECTOR_H

namespace Eigen {

namespace internal {

/* Optimized col-major matrix * vector product:
 * This algorithm processes the matrix per vertical panels,
 * which are then processed horizontaly per chunck of 8*PacketSize x 1 vertical segments.
 *
 * Mixing type logic: C += alpha * A * B
 *  |  A  |  B  |alpha| comments
 *  |real |cplx |cplx | no vectorization
 *  |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
 *  |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
 *  |cplx |real |real | optimal case, vectorization possible via real-cplx mul
 *
 * The same reasoning apply for the transposed case.
 */
template<typename Index, typename LhsScalar, typename LhsMapper, bool ConjugateLhs, typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version>
struct general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,ConjugateLhs,RhsScalar,RhsMapper,ConjugateRhs,Version>
{
  typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;

enum {
  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
              && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};

typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
typedef typename packet_traits<ResScalar>::type  _ResPacket;

typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

EIGEN_DONT_INLINE static void run(
  Index rows, Index cols,
  const LhsMapper& lhs,
  const RhsMapper& rhs,
        ResScalar* res, Index resIncr,
  RhsScalar alpha);
};

template<typename Index, typename LhsScalar, typename LhsMapper, bool ConjugateLhs, typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version>
EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,ConjugateLhs,RhsScalar,RhsMapper,ConjugateRhs,Version>::run(
  Index rows, Index cols,
  const LhsMapper& alhs,
  const RhsMapper& rhs,
        ResScalar* res, Index resIncr,
  RhsScalar alpha)
{
  EIGEN_UNUSED_VARIABLE(resIncr);
  eigen_internal_assert(resIncr==1);

  // The following copy tells the compiler that lhs's attributes are not modified outside this function
  // This helps GCC to generate propoer code.
  LhsMapper lhs(alhs);

  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
  const Index lhsStride = lhs.stride();
  // TODO: for padded aligned inputs, we could enable aligned reads
  enum { LhsAlignment = Unaligned };

  const Index n8 = rows-8*ResPacketSize+1;
  const Index n4 = rows-4*ResPacketSize+1;
  const Index n3 = rows-3*ResPacketSize+1;
  const Index n2 = rows-2*ResPacketSize+1;
  const Index n1 = rows-1*ResPacketSize+1;

  // TODO: improve the following heuristic:
  const Index block_cols = cols<128 ? cols : (lhsStride*sizeof(LhsScalar)<32000?16:4);
  ResPacket palpha = pset1<ResPacket>(alpha);

  for(Index j2=0; j2<cols; j2+=block_cols)
  {
    Index jend = numext::mini(j2+block_cols,cols);
    Index i=0;
    for(; i<n8; i+=ResPacketSize*8)
    {
      ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
                c1 = pset1<ResPacket>(ResScalar(0)),
                c2 = pset1<ResPacket>(ResScalar(0)),
                c3 = pset1<ResPacket>(ResScalar(0)),
                c4 = pset1<ResPacket>(ResScalar(0)),
                c5 = pset1<ResPacket>(ResScalar(0)),
                c6 = pset1<ResPacket>(ResScalar(0)),
                c7 = pset1<ResPacket>(ResScalar(0));

      for(Index j=j2; j<jend; j+=1)
      {
        RhsPacket b0 = pset1<RhsPacket>(rhs(j,0));
        c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*0,j),b0,c0);
        c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*1,j),b0,c1);
        c2 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*2,j),b0,c2);
        c3 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*3,j),b0,c3);
        c4 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*4,j),b0,c4);
        c5 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*5,j),b0,c5);
        c6 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*6,j),b0,c6);
        c7 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*7,j),b0,c7);
      }
      pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu<ResPacket>(res+i+ResPacketSize*0)));
      pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu<ResPacket>(res+i+ResPacketSize*1)));
      pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu<ResPacket>(res+i+ResPacketSize*2)));
      pstoreu(res+i+ResPacketSize*3, pmadd(c3,palpha,ploadu<ResPacket>(res+i+ResPacketSize*3)));
      pstoreu(res+i+ResPacketSize*4, pmadd(c4,palpha,ploadu<ResPacket>(res+i+ResPacketSize*4)));
      pstoreu(res+i+ResPacketSize*5, pmadd(c5,palpha,ploadu<ResPacket>(res+i+ResPacketSize*5)));
      pstoreu(res+i+ResPacketSize*6, pmadd(c6,palpha,ploadu<ResPacket>(res+i+ResPacketSize*6)));
      pstoreu(res+i+ResPacketSize*7, pmadd(c7,palpha,ploadu<ResPacket>(res+i+ResPacketSize*7)));
    }
    if(i<n4)
    {
      ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
                c1 = pset1<ResPacket>(ResScalar(0)),
                c2 = pset1<ResPacket>(ResScalar(0)),
                c3 = pset1<ResPacket>(ResScalar(0));

      for(Index j=j2; j<jend; j+=1)
      {
        RhsPacket b0 = pset1<RhsPacket>(rhs(j,0));
        c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*0,j),b0,c0);
        c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*1,j),b0,c1);
        c2 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*2,j),b0,c2);
        c3 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*3,j),b0,c3);
      }
      pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu<ResPacket>(res+i+ResPacketSize*0)));
      pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu<ResPacket>(res+i+ResPacketSize*1)));
      pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu<ResPacket>(res+i+ResPacketSize*2)));
      pstoreu(res+i+ResPacketSize*3, pmadd(c3,palpha,ploadu<ResPacket>(res+i+ResPacketSize*3)));

      i+=ResPacketSize*4;
    }
    if(i<n3)
    {
      ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
                c1 = pset1<ResPacket>(ResScalar(0)),
                c2 = pset1<ResPacket>(ResScalar(0));

      for(Index j=j2; j<jend; j+=1)
      {
        RhsPacket b0 = pset1<RhsPacket>(rhs(j,0));
        c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*0,j),b0,c0);
        c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*1,j),b0,c1);
        c2 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*2,j),b0,c2);
      }
      pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu<ResPacket>(res+i+ResPacketSize*0)));
      pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu<ResPacket>(res+i+ResPacketSize*1)));
      pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu<ResPacket>(res+i+ResPacketSize*2)));

      i+=ResPacketSize*3;
    }
    if(i<n2)
    {
      ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
                c1 = pset1<ResPacket>(ResScalar(0));

      for(Index j=j2; j<jend; j+=1)
      {
        RhsPacket b0 = pset1<RhsPacket>(rhs(j,0));
        c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*0,j),b0,c0);
        c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+LhsPacketSize*1,j),b0,c1);
      }
      pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu<ResPacket>(res+i+ResPacketSize*0)));
      pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu<ResPacket>(res+i+ResPacketSize*1)));
      i+=ResPacketSize*2;
    }
    if(i<n1)
    {
      ResPacket c0 = pset1<ResPacket>(ResScalar(0));
      for(Index j=j2; j<jend; j+=1)
      {
        RhsPacket b0 = pset1<RhsPacket>(rhs(j,0));
        c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+0,j),b0,c0);
      }
      pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu<ResPacket>(res+i+ResPacketSize*0)));
      i+=ResPacketSize;
    }
    for(;i<rows;++i)
    {
      ResScalar c0(0);
      for(Index j=j2; j<jend; j+=1)
        c0 += cj.pmul(lhs(i,j), rhs(j,0));
      res[i] += alpha*c0;
    }
  }
}

/* Optimized row-major matrix * vector product:
 * This algorithm processes 4 rows at once that allows to both reduce
 * the number of load/stores of the result by a factor 4 and to reduce
 * the instruction dependency. Moreover, we know that all bands have the
 * same alignment pattern.
 *
 * Mixing type logic:
 *  - alpha is always a complex (or converted to a complex)
 *  - no vectorization
 */
template<typename Index, typename LhsScalar, typename LhsMapper, bool ConjugateLhs, typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version>
struct general_matrix_vector_product<Index,LhsScalar,LhsMapper,RowMajor,ConjugateLhs,RhsScalar,RhsMapper,ConjugateRhs,Version>
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;

enum {
  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
              && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};

typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
typedef typename packet_traits<ResScalar>::type  _ResPacket;

typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

EIGEN_DONT_INLINE static void run(
  Index rows, Index cols,
  const LhsMapper& lhs,
  const RhsMapper& rhs,
        ResScalar* res, Index resIncr,
  ResScalar alpha);
};

template<typename Index, typename LhsScalar, typename LhsMapper, bool ConjugateLhs, typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version>
EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,LhsMapper,RowMajor,ConjugateLhs,RhsScalar,RhsMapper,ConjugateRhs,Version>::run(
  Index rows, Index cols,
  const LhsMapper& alhs,
  const RhsMapper& rhs,
  ResScalar* res, Index resIncr,
  ResScalar alpha)
{
  // The following copy tells the compiler that lhs's attributes are not modified outside this function
  // This helps GCC to generate propoer code.
  LhsMapper lhs(alhs);

  eigen_internal_assert(rhs.stride()==1);
  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;

  // TODO: fine tune the following heuristic. The rationale is that if the matrix is very large,
  //       processing 8 rows at once might be counter productive wrt cache.
  const Index n8 = lhs.stride()*sizeof(LhsScalar)>32000 ? 0 : rows-7;
  const Index n4 = rows-3;
  const Index n2 = rows-1;

  // TODO: for padded aligned inputs, we could enable aligned reads
  enum { LhsAlignment = Unaligned };

  Index i=0;
  for(; i<n8; i+=8)
  {
    ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
              c1 = pset1<ResPacket>(ResScalar(0)),
              c2 = pset1<ResPacket>(ResScalar(0)),
              c3 = pset1<ResPacket>(ResScalar(0)),
              c4 = pset1<ResPacket>(ResScalar(0)),
              c5 = pset1<ResPacket>(ResScalar(0)),
              c6 = pset1<ResPacket>(ResScalar(0)),
              c7 = pset1<ResPacket>(ResScalar(0));

    Index j=0;
    for(; j+LhsPacketSize<=cols; j+=LhsPacketSize)
    {
      RhsPacket b0 = rhs.template load<RhsPacket, Unaligned>(j,0);

      c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+0,j),b0,c0);
      c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+1,j),b0,c1);
      c2 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+2,j),b0,c2);
      c3 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+3,j),b0,c3);
      c4 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+4,j),b0,c4);
      c5 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+5,j),b0,c5);
      c6 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+6,j),b0,c6);
      c7 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+7,j),b0,c7);
    }
    ResScalar cc0 = predux(c0);
    ResScalar cc1 = predux(c1);
    ResScalar cc2 = predux(c2);
    ResScalar cc3 = predux(c3);
    ResScalar cc4 = predux(c4);
    ResScalar cc5 = predux(c5);
    ResScalar cc6 = predux(c6);
    ResScalar cc7 = predux(c7);
    for(; j<cols; ++j)
    {
      RhsScalar b0 = rhs(j,0);

      cc0 += cj.pmul(lhs(i+0,j), b0);
      cc1 += cj.pmul(lhs(i+1,j), b0);
      cc2 += cj.pmul(lhs(i+2,j), b0);
      cc3 += cj.pmul(lhs(i+3,j), b0);
      cc4 += cj.pmul(lhs(i+4,j), b0);
      cc5 += cj.pmul(lhs(i+5,j), b0);
      cc6 += cj.pmul(lhs(i+6,j), b0);
      cc7 += cj.pmul(lhs(i+7,j), b0);
    }
    res[(i+0)*resIncr] += alpha*cc0;
    res[(i+1)*resIncr] += alpha*cc1;
    res[(i+2)*resIncr] += alpha*cc2;
    res[(i+3)*resIncr] += alpha*cc3;
    res[(i+4)*resIncr] += alpha*cc4;
    res[(i+5)*resIncr] += alpha*cc5;
    res[(i+6)*resIncr] += alpha*cc6;
    res[(i+7)*resIncr] += alpha*cc7;
  }
  for(; i<n4; i+=4)
  {
    ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
              c1 = pset1<ResPacket>(ResScalar(0)),
              c2 = pset1<ResPacket>(ResScalar(0)),
              c3 = pset1<ResPacket>(ResScalar(0));

    Index j=0;
    for(; j+LhsPacketSize<=cols; j+=LhsPacketSize)
    {
      RhsPacket b0 = rhs.template load<RhsPacket, Unaligned>(j,0);

      c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+0,j),b0,c0);
      c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+1,j),b0,c1);
      c2 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+2,j),b0,c2);
      c3 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+3,j),b0,c3);
    }
    ResScalar cc0 = predux(c0);
    ResScalar cc1 = predux(c1);
    ResScalar cc2 = predux(c2);
    ResScalar cc3 = predux(c3);
    for(; j<cols; ++j)
    {
      RhsScalar b0 = rhs(j,0);

      cc0 += cj.pmul(lhs(i+0,j), b0);
      cc1 += cj.pmul(lhs(i+1,j), b0);
      cc2 += cj.pmul(lhs(i+2,j), b0);
      cc3 += cj.pmul(lhs(i+3,j), b0);
    }
    res[(i+0)*resIncr] += alpha*cc0;
    res[(i+1)*resIncr] += alpha*cc1;
    res[(i+2)*resIncr] += alpha*cc2;
    res[(i+3)*resIncr] += alpha*cc3;
  }
  for(; i<n2; i+=2)
  {
    ResPacket c0 = pset1<ResPacket>(ResScalar(0)),
              c1 = pset1<ResPacket>(ResScalar(0));

    Index j=0;
    for(; j+LhsPacketSize<=cols; j+=LhsPacketSize)
    {
      RhsPacket b0 = rhs.template load<RhsPacket, Unaligned>(j,0);

      c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+0,j),b0,c0);
      c1 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i+1,j),b0,c1);
    }
    ResScalar cc0 = predux(c0);
    ResScalar cc1 = predux(c1);
    for(; j<cols; ++j)
    {
      RhsScalar b0 = rhs(j,0);

      cc0 += cj.pmul(lhs(i+0,j), b0);
      cc1 += cj.pmul(lhs(i+1,j), b0);
    }
    res[(i+0)*resIncr] += alpha*cc0;
    res[(i+1)*resIncr] += alpha*cc1;
  }
  for(; i<rows; ++i)
  {
    ResPacket c0 = pset1<ResPacket>(ResScalar(0));
    Index j=0;
    for(; j+LhsPacketSize<=cols; j+=LhsPacketSize)
    {
      RhsPacket b0 = rhs.template load<RhsPacket,Unaligned>(j,0);
      c0 = pcj.pmadd(lhs.template load<LhsPacket,LhsAlignment>(i,j),b0,c0);
    }
    ResScalar cc0 = predux(c0);
    for(; j<cols; ++j)
    {
      cc0 += cj.pmul(lhs(i,j), rhs(j,0));
    }
    res[i*resIncr] += alpha*cc0;
  }
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_GENERAL_MATRIX_VECTOR_H