aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/products/GeneralMatrixMatrix.h
blob: 79f02c7e326cfe02a62873a1a1d8cd805043da3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H

template <int L2MemorySize,typename Scalar>
struct ei_L2_block_traits {
  enum {width = 8 * ei_meta_sqrt<L2MemorySize/(64*sizeof(Scalar))>::ret };
};

#ifndef EIGEN_EXTERN_INSTANTIATIONS

template<typename Scalar>
static void ei_cache_friendly_product(
  int _rows, int _cols, int depth,
  bool _lhsRowMajor, const Scalar* _lhs, int _lhsStride,
  bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
  bool resRowMajor, Scalar* res, int resStride)
{
  const Scalar* EIGEN_RESTRICT lhs;
  const Scalar* EIGEN_RESTRICT rhs;
  int lhsStride, rhsStride, rows, cols;
  bool lhsRowMajor;

  if (resRowMajor)
  {
    lhs = _rhs;
    rhs = _lhs;
    lhsStride = _rhsStride;
    rhsStride = _lhsStride;
    cols = _rows;
    rows = _cols;
    lhsRowMajor = !_rhsRowMajor;
    ei_assert(_lhsRowMajor);
  }
  else
  {
    lhs = _lhs;
    rhs = _rhs;
    lhsStride = _lhsStride;
    rhsStride = _rhsStride;
    rows = _rows;
    cols = _cols;
    lhsRowMajor = _lhsRowMajor;
    ei_assert(!_rhsRowMajor);
  }

  typedef typename ei_packet_traits<Scalar>::type PacketType;



#ifndef EIGEN_USE_ALT_PRODUCT

  enum {
    PacketSize = sizeof(PacketType)/sizeof(Scalar),
    #if (defined __i386__)
    HalfRegisterCount = 4,
    #else
    HalfRegisterCount = 8,
    #endif

    // register block size along the N direction
    nr = HalfRegisterCount/2,

    // register block size along the M direction
    mr = 2 * PacketSize,

    // max cache block size along the K direction
    Max_kc = ei_L2_block_traits<EIGEN_TUNE_FOR_CPU_CACHE_SIZE,Scalar>::width,

    // max cache block size along the M direction
    Max_mc = 2*Max_kc
  };

  int kc = std::min<int>(Max_kc,depth);  // cache block size along the K direction
  int mc = std::min<int>(Max_mc,rows);   // cache block size along the M direction

  Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
  Scalar* blockB = ei_aligned_stack_new(Scalar, kc*cols*PacketSize);

  // number of columns which can be processed by packet of nr columns
  int packet_cols = (cols/nr)*nr;

  // GEMM_VAR1
  for(int k2=0; k2<depth; k2+=kc)
  {
    const int actual_kc = std::min(k2+kc,depth)-k2;

    // we have selected one row panel of rhs and one column panel of lhs
    // pack rhs's panel into a sequential chunk of memory
    // and expand each coeff to a constant packet for further reuse
    {
      int count = 0;
      for(int j2=0; j2<packet_cols; j2+=nr)
      {
        const Scalar* b0 = &rhs[(j2+0)*rhsStride + k2];
        const Scalar* b1 = &rhs[(j2+1)*rhsStride + k2];
        const Scalar* b2 = &rhs[(j2+2)*rhsStride + k2];
        const Scalar* b3 = &rhs[(j2+3)*rhsStride + k2];
        for(int k=0; k<actual_kc; k++)
        {
          ei_pstore(&blockB[count+0*PacketSize], ei_pset1(b0[k]));
          ei_pstore(&blockB[count+1*PacketSize], ei_pset1(b1[k]));
          if (nr==4)
          {
            ei_pstore(&blockB[count+2*PacketSize], ei_pset1(b2[k]));
            ei_pstore(&blockB[count+3*PacketSize], ei_pset1(b3[k]));
          }
          count += nr*PacketSize;
        }
      }
    }

    // => GEPP_VAR1
    for(int i2=0; i2<rows; i2+=mc)
    {
      const int actual_mc = std::min(i2+mc,rows)-i2;

      // We have selected a mc x kc block of lhs
      // Let's pack it in a clever order for further purely sequential access
      int count = 0;
      const int peeled_mc = (actual_mc/mr)*mr;
      if (lhsRowMajor)
      {
        for(int i=0; i<peeled_mc; i+=mr)
          for(int k=0; k<actual_kc; k++)
            for(int w=0; w<mr; w++)
              blockA[count++] = lhs[(k2+k) + (i2+i+w)*lhsStride];
        for(int i=peeled_mc; i<actual_mc; i++)
        {
          const Scalar* llhs = &lhs[(k2) + (i2+i)*lhsStride];
          for(int k=0; k<actual_kc; k++)
            blockA[count++] = llhs[k];
        }
      }
      else
      {
        for(int i=0; i<peeled_mc; i+=mr)
          for(int k=0; k<actual_kc; k++)
            for(int w=0; w<mr; w++)
              blockA[count++] = lhs[(k2+k)*lhsStride + i2+i+w];
        for(int i=peeled_mc; i<actual_mc; i++)
          for(int k=0; k<actual_kc; k++)
            blockA[count++] = lhs[(k2+k)*lhsStride + i2+i];
      }

      // GEBP
      // loops on each cache friendly block of the result/rhs
      for(int j2=0; j2<packet_cols; j2+=nr)
      {
        // loops on each register blocking of lhs/res
        const int peeled_mc = (actual_mc/mr)*mr;
        for(int i=0; i<peeled_mc; i+=mr)
        {
          const Scalar* blA = &blockA[i*actual_kc];
          #ifdef EIGEN_VECTORIZE_SSE
          _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0);
          #endif

          // TODO move the res loads to the stores

          // gets res block as register
          PacketType C0, C1, C2, C3, C4, C5, C6, C7;
                    C0 = ei_ploadu(&res[(j2+0)*resStride + i2 + i]);
                    C1 = ei_ploadu(&res[(j2+1)*resStride + i2 + i]);
          if(nr==4) C2 = ei_ploadu(&res[(j2+2)*resStride + i2 + i]);
          if(nr==4) C3 = ei_ploadu(&res[(j2+3)*resStride + i2 + i]);
                    C4 = ei_ploadu(&res[(j2+0)*resStride + i2 + i + PacketSize]);
                    C5 = ei_ploadu(&res[(j2+1)*resStride + i2 + i + PacketSize]);
          if(nr==4) C6 = ei_ploadu(&res[(j2+2)*resStride + i2 + i + PacketSize]);
          if(nr==4) C7 = ei_ploadu(&res[(j2+3)*resStride + i2 + i + PacketSize]);

          // performs "inner" product
          // TODO let's check wether the flowing peeled loop could not be
          //      optimized via optimal prefetching from one loop to the other
          const Scalar* blB = &blockB[j2*actual_kc*PacketSize];
          const int peeled_kc = (actual_kc/4)*4;
          for(int k=0; k<peeled_kc; k+=4)
          {
            PacketType B0, B1, B2, B3, A0, A1;

                      A0 = ei_pload(&blA[0*PacketSize]);
                      A1 = ei_pload(&blA[1*PacketSize]);
                      B0 = ei_pload(&blB[0*PacketSize]);
                      B1 = ei_pload(&blB[1*PacketSize]);
                      C0 = ei_pmadd(B0, A0, C0);
            if(nr==4) B2 = ei_pload(&blB[2*PacketSize]);
                      C4 = ei_pmadd(B0, A1, C4);
            if(nr==4) B3 = ei_pload(&blB[3*PacketSize]);
                      B0 = ei_pload(&blB[(nr==4 ? 4 : 2)*PacketSize]);
                      C1 = ei_pmadd(B1, A0, C1);
                      C5 = ei_pmadd(B1, A1, C5);
                      B1 = ei_pload(&blB[(nr==4 ? 5 : 3)*PacketSize]);
            if(nr==4) C2 = ei_pmadd(B2, A0, C2);
            if(nr==4) C6 = ei_pmadd(B2, A1, C6);
            if(nr==4) B2 = ei_pload(&blB[6*PacketSize]);
            if(nr==4) C3 = ei_pmadd(B3, A0, C3);
                      A0 = ei_pload(&blA[2*PacketSize]);
            if(nr==4) C7 = ei_pmadd(B3, A1, C7);
                      A1 = ei_pload(&blA[3*PacketSize]);
            if(nr==4) B3 = ei_pload(&blB[7*PacketSize]);
                      C0 = ei_pmadd(B0, A0, C0);
                      C4 = ei_pmadd(B0, A1, C4);
                      B0 = ei_pload(&blB[(nr==4 ? 8 : 4)*PacketSize]);
                      C1 = ei_pmadd(B1, A0, C1);
                      C5 = ei_pmadd(B1, A1, C5);
                      B1 = ei_pload(&blB[(nr==4 ? 9 : 5)*PacketSize]);
            if(nr==4) C2 = ei_pmadd(B2, A0, C2);
            if(nr==4) C6 = ei_pmadd(B2, A1, C6);
            if(nr==4) B2 = ei_pload(&blB[10*PacketSize]);
            if(nr==4) C3 = ei_pmadd(B3, A0, C3);
                      A0 = ei_pload(&blA[4*PacketSize]);
            if(nr==4) C7 = ei_pmadd(B3, A1, C7);
                      A1 = ei_pload(&blA[5*PacketSize]);
            if(nr==4) B3 = ei_pload(&blB[11*PacketSize]);

                      C0 = ei_pmadd(B0, A0, C0);
                      C4 = ei_pmadd(B0, A1, C4);
                      B0 = ei_pload(&blB[(nr==4 ? 12 : 6)*PacketSize]);
                      C1 = ei_pmadd(B1, A0, C1);
                      C5 = ei_pmadd(B1, A1, C5);
                      B1 = ei_pload(&blB[(nr==4 ? 13 : 7)*PacketSize]);
            if(nr==4) C2 = ei_pmadd(B2, A0, C2);
            if(nr==4) C6 = ei_pmadd(B2, A1, C6);
            if(nr==4) B2 = ei_pload(&blB[14*PacketSize]);
            if(nr==4) C3 = ei_pmadd(B3, A0, C3);
                      A0 = ei_pload(&blA[6*PacketSize]);
            if(nr==4) C7 = ei_pmadd(B3, A1, C7);
                      A1 = ei_pload(&blA[7*PacketSize]);
            if(nr==4) B3 = ei_pload(&blB[15*PacketSize]);
                      C0 = ei_pmadd(B0, A0, C0);
                      C4 = ei_pmadd(B0, A1, C4);
                      C1 = ei_pmadd(B1, A0, C1);
                      C5 = ei_pmadd(B1, A1, C5);
            if(nr==4) C2 = ei_pmadd(B2, A0, C2);
            if(nr==4) C6 = ei_pmadd(B2, A1, C6);
            if(nr==4) C3 = ei_pmadd(B3, A0, C3);
            if(nr==4) C7 = ei_pmadd(B3, A1, C7);

            blB += 4*nr*PacketSize;
            blA += 4*mr;
          }
          // process remaining peeled loop
          for(int k=peeled_kc; k<actual_kc; k++)
          {
            PacketType B0, B1, B2, B3, A0, A1;

                      A0 = ei_pload(&blA[0*PacketSize]);
                      A1 = ei_pload(&blA[1*PacketSize]);
                      B0 = ei_pload(&blB[0*PacketSize]);
                      B1 = ei_pload(&blB[1*PacketSize]);
                      C0 = ei_pmadd(B0, A0, C0);
            if(nr==4) B2 = ei_pload(&blB[2*PacketSize]);
                      C4 = ei_pmadd(B0, A1, C4);
            if(nr==4) B3 = ei_pload(&blB[3*PacketSize]);
                      C1 = ei_pmadd(B1, A0, C1);
                      C5 = ei_pmadd(B1, A1, C5);
            if(nr==4) C2 = ei_pmadd(B2, A0, C2);
            if(nr==4) C6 = ei_pmadd(B2, A1, C6);
            if(nr==4) C3 = ei_pmadd(B3, A0, C3);
            if(nr==4) C7 = ei_pmadd(B3, A1, C7);

            blB += nr*PacketSize;
            blA += mr;
          }

                    ei_pstoreu(&res[(j2+0)*resStride + i2 + i], C0);
                    ei_pstoreu(&res[(j2+1)*resStride + i2 + i], C1);
          if(nr==4) ei_pstoreu(&res[(j2+2)*resStride + i2 + i], C2);
          if(nr==4) ei_pstoreu(&res[(j2+3)*resStride + i2 + i], C3);
                    ei_pstoreu(&res[(j2+0)*resStride + i2 + i + PacketSize], C4);
                    ei_pstoreu(&res[(j2+1)*resStride + i2 + i + PacketSize], C5);
          if(nr==4) ei_pstoreu(&res[(j2+2)*resStride + i2 + i + PacketSize], C6);
          if(nr==4) ei_pstoreu(&res[(j2+3)*resStride + i2 + i + PacketSize], C7);
        }
        for(int i=peeled_mc; i<actual_mc; i++)
        {
          const Scalar* blA = &blockA[i*actual_kc];
          #ifdef EIGEN_VECTORIZE_SSE
          _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0);
          #endif

          // gets a 1 x nr res block as registers
          Scalar C0(0), C1(0), C2(0), C3(0);
          const Scalar* blB = &blockB[j2*actual_kc*PacketSize];
          for(int k=0; k<actual_kc; k++)
          {
            Scalar B0, B1, B2, B3, A0;

                      A0 =  blA[k];
                      B0 =  blB[0*PacketSize];
                      B1 =  blB[1*PacketSize];
                      C0 += B0 * A0;
            if(nr==4) B2 =  blB[2*PacketSize];
            if(nr==4) B3 =  blB[3*PacketSize];
                      C1 += B1 * A0;
            if(nr==4) C2 += B2 * A0;
            if(nr==4) C3 += B3 * A0;

            blB += nr*PacketSize;
          }
          res[(j2+0)*resStride + i2 + i] += C0;
          res[(j2+1)*resStride + i2 + i] += C1;
          if(nr==4) res[(j2+2)*resStride + i2 + i] += C2;
          if(nr==4) res[(j2+3)*resStride + i2 + i] += C3;
        }
      }
      // remaining rhs/res columns (<nr)
      for(int j2=packet_cols; j2<cols; j2++)
      {
        for(int i=0; i<actual_mc; i++)
        {
          Scalar c0 = res[(j2)*resStride + i2+i];
          if (lhsRowMajor)
            for(int k=0; k<actual_kc; k++)
              c0 += lhs[(k2+k)+(i2+i)*lhsStride] * rhs[j2*rhsStride + k2 + k];
          else
            for(int k=0; k<actual_kc; k++)
              c0 += lhs[(k2+k)*lhsStride + i2+i] * rhs[j2*rhsStride + k2 + k];
          res[(j2)*resStride + i2+i] = c0;
        }
      }
    }
  }

  ei_aligned_stack_delete(Scalar, blockA, kc*mc);
  ei_aligned_stack_delete(Scalar, blockB, kc*cols*PacketSize);

#else // alternate product from cylmor

  enum {
    PacketSize = sizeof(PacketType)/sizeof(Scalar),
    #if (defined __i386__)
    // i386 architecture provides only 8 xmm registers,
    // so let's reduce the max number of rows processed at once.
    MaxBlockRows = 4,
    MaxBlockRows_ClampingMask = 0xFFFFFC,
    #else
    MaxBlockRows = 8,
    MaxBlockRows_ClampingMask = 0xFFFFF8,
    #endif
    // maximal size of the blocks fitted in L2 cache
    MaxL2BlockSize = ei_L2_block_traits<EIGEN_TUNE_FOR_CPU_CACHE_SIZE,Scalar>::width
  };

  const bool resIsAligned = (PacketSize==1) || (((resStride%PacketSize) == 0) && (size_t(res)%16==0));

  const int remainingSize = depth % PacketSize;
  const int size = depth - remainingSize; // third dimension of the product clamped to packet boundaries

  const int l2BlockRows = MaxL2BlockSize > rows ? rows : 512;
  const int l2BlockCols = MaxL2BlockSize > cols ? cols : 128;
  const int l2BlockSize = MaxL2BlockSize > size ? size : 256;
  const int l2BlockSizeAligned = (1 + std::max(l2BlockSize,l2BlockCols)/PacketSize)*PacketSize;
  const bool needRhsCopy = (PacketSize>1) && ((rhsStride%PacketSize!=0) || (size_t(rhs)%16!=0));

  Scalar* EIGEN_RESTRICT block = new Scalar[l2BlockRows*size];
//   for(int i=0; i<l2BlockRows*l2BlockSize; ++i)
//     block[i] = 0;
  // loops on each L2 cache friendly blocks of lhs
  for(int l2k=0; l2k<depth; l2k+=l2BlockSize)
  {
    for(int l2i=0; l2i<rows; l2i+=l2BlockRows)
    {
      // We have selected a block of lhs
      // Packs this block into 'block'
      int count = 0;
      for(int k=0; k<l2BlockSize; k+=MaxBlockRows)
      {
        for(int i=0; i<l2BlockRows; i+=2*PacketSize)
          for (int w=0; w<MaxBlockRows; ++w)
            for (int y=0; y<2*PacketSize; ++y)
              block[count++] = lhs[(k+l2k+w)*lhsStride + l2i+i+ y];
      }

      // loops on each L2 cache firendly block of the result/rhs
      for(int l2j=0; l2j<cols; l2j+=l2BlockCols)
      {
        for(int k=0; k<l2BlockSize; k+=MaxBlockRows)
        {
          for(int j=0; j<l2BlockCols; ++j)
          {
            PacketType A0, A1, A2, A3, A4, A5, A6, A7;

            // Load the packets from rhs and reorder them

            // Here we need some vector reordering
            // Right now its hardcoded to packets of 4 elements
            const Scalar* lrhs = &rhs[(j+l2j)*rhsStride+(k+l2k)];
            A0 = ei_pset1(lrhs[0]);
            A1 = ei_pset1(lrhs[1]);
            A2 = ei_pset1(lrhs[2]);
            A3 = ei_pset1(lrhs[3]);
            if (MaxBlockRows==8)
            {
              A4 = ei_pset1(lrhs[4]);
              A5 = ei_pset1(lrhs[5]);
              A6 = ei_pset1(lrhs[6]);
              A7 = ei_pset1(lrhs[7]);
            }

            Scalar * lb = &block[l2BlockRows * k];
            for(int i=0; i<l2BlockRows; i+=2*PacketSize)
            {
              PacketType R0, R1, L0, L1, T0, T1;

              // We perform "cross products" of vectors to avoid
              // reductions (horizontal ops) afterwards
              T0 = ei_pload(&res[(j+l2j)*resStride+l2i+i]);
              T1 = ei_pload(&res[(j+l2j)*resStride+l2i+i+PacketSize]);

              R0 = ei_pload(&lb[0*PacketSize]);
              L0 = ei_pload(&lb[1*PacketSize]);
              R1 = ei_pload(&lb[2*PacketSize]);
              L1 = ei_pload(&lb[3*PacketSize]);
              T0 = ei_pmadd(R0, A0, T0);
              T1 = ei_pmadd(L0, A0, T1);
              R0 = ei_pload(&lb[4*PacketSize]);
              L0 = ei_pload(&lb[5*PacketSize]);
              T0 = ei_pmadd(R1, A1, T0);
              T1 = ei_pmadd(L1, A1, T1);
              R1 = ei_pload(&lb[6*PacketSize]);
              L1 = ei_pload(&lb[7*PacketSize]);
              T0 = ei_pmadd(R0, A2, T0);
              T1 = ei_pmadd(L0, A2, T1);
              if(MaxBlockRows==8)
              {
                R0 = ei_pload(&lb[8*PacketSize]);
                L0 = ei_pload(&lb[9*PacketSize]);
              }
              T0 = ei_pmadd(R1, A3, T0);
              T1 = ei_pmadd(L1, A3, T1);
              if(MaxBlockRows==8)
              {
                R1 = ei_pload(&lb[10*PacketSize]);
                L1 = ei_pload(&lb[11*PacketSize]);
                T0 = ei_pmadd(R0, A4, T0);
                T1 = ei_pmadd(L0, A4, T1);
                R0 = ei_pload(&lb[12*PacketSize]);
                L0 = ei_pload(&lb[13*PacketSize]);
                T0 = ei_pmadd(R1, A5, T0);
                T1 = ei_pmadd(L1, A5, T1);
                R1 = ei_pload(&lb[14*PacketSize]);
                L1 = ei_pload(&lb[15*PacketSize]);
                T0 = ei_pmadd(R0, A6, T0);
                T1 = ei_pmadd(L0, A6, T1);
                T0 = ei_pmadd(R1, A7, T0);
                T1 = ei_pmadd(L1, A7, T1);
              }
              lb += MaxBlockRows*2*PacketSize;

              ei_pstore(&res[(j+l2j)*resStride+l2i+i], T0);
              ei_pstore(&res[(j+l2j)*resStride+l2i+i+PacketSize], T1);
            }
          }
        }
      }
    }
  }
  delete[] block;
#endif


}

#endif // EIGEN_EXTERN_INSTANTIATIONS

#endif // EIGEN_GENERAL_MATRIX_MATRIX_H