aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/products/CoeffBasedProduct.h
blob: d2e693861f708bb9688adb74496ae2eb37ae1147 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COEFFBASED_PRODUCT_H
#define EIGEN_COEFFBASED_PRODUCT_H

/*********************************************************************************
*  Coefficient based product implementation.
*  It is designed for the following use cases:
*  - small fixed sizes
*  - lazy products
*********************************************************************************/

/* Since the all the dimensions of the product are small, here we can rely
 * on the generic Assign mechanism to evaluate the product per coeff (or packet).
 *
 * Note that here the inner-loops should always be unrolled.
 */

template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl;

template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl;

template<typename LhsNested, typename RhsNested, int NestingFlags>
struct ei_traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
{
  typedef MatrixXpr XprKind;
  typedef typename ei_cleantype<LhsNested>::type _LhsNested;
  typedef typename ei_cleantype<RhsNested>::type _RhsNested;
  typedef typename ei_scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
  typedef typename ei_promote_storage_type<typename ei_traits<_LhsNested>::StorageKind,
                                           typename ei_traits<_RhsNested>::StorageKind>::ret StorageKind;
  typedef typename ei_promote_index_type<typename ei_traits<_LhsNested>::Index,
                                         typename ei_traits<_RhsNested>::Index>::type Index;

  enum {
      LhsCoeffReadCost = _LhsNested::CoeffReadCost,
      RhsCoeffReadCost = _RhsNested::CoeffReadCost,
      LhsFlags = _LhsNested::Flags,
      RhsFlags = _RhsNested::Flags,

      RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
      ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
      InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),

      MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,

      LhsRowMajor = LhsFlags & RowMajorBit,
      RhsRowMajor = RhsFlags & RowMajorBit,

      SameType = ei_is_same_type<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::ret,

      CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
                      && (ColsAtCompileTime == Dynamic
                          || ( (ColsAtCompileTime % ei_packet_traits<Scalar>::size) == 0
                              && (RhsFlags&AlignedBit)
                             )
                         ),

      CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
                      && (RowsAtCompileTime == Dynamic
                          || ( (RowsAtCompileTime % ei_packet_traits<Scalar>::size) == 0
                              && (LhsFlags&AlignedBit)
                             )
                         ),

      EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
                     : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
                     : (RhsRowMajor && !CanVectorizeLhs),

      Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
            | (EvalToRowMajor ? RowMajorBit : 0)
            | NestingFlags
            // TODO enable vectorization for mixed types
            | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),

      CoeffReadCost = InnerSize == Dynamic ? Dynamic
                    : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
                      + (InnerSize - 1) * NumTraits<Scalar>::AddCost,

      /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
      * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
      * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
      * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
      */
      CanVectorizeInner =    SameType
                          && LhsRowMajor
                          && (!RhsRowMajor)
                          && (LhsFlags & RhsFlags & ActualPacketAccessBit)
                          && (LhsFlags & RhsFlags & AlignedBit)
                          && (InnerSize % ei_packet_traits<Scalar>::size == 0)
    };
};

template<typename LhsNested, typename RhsNested, int NestingFlags>
class CoeffBasedProduct
  : ei_no_assignment_operator,
    public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
{
  public:

    typedef MatrixBase<CoeffBasedProduct> Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
    typedef typename Base::PlainObject PlainObject;

  private:

    typedef typename ei_traits<CoeffBasedProduct>::_LhsNested _LhsNested;
    typedef typename ei_traits<CoeffBasedProduct>::_RhsNested _RhsNested;

    enum {
      PacketSize = ei_packet_traits<Scalar>::size,
      InnerSize  = ei_traits<CoeffBasedProduct>::InnerSize,
      Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
      CanVectorizeInner = ei_traits<CoeffBasedProduct>::CanVectorizeInner
    };

    typedef ei_product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
                                  Unroll ? InnerSize-1 : Dynamic,
                                  _LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;

    typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;

  public:

    inline CoeffBasedProduct(const CoeffBasedProduct& other)
      : Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
    {}

    template<typename Lhs, typename Rhs>
    inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
      : m_lhs(lhs), m_rhs(rhs)
    {
      // we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
      // We still allow to mix T and complex<T>.
      EIGEN_STATIC_ASSERT((ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      ei_assert(lhs.cols() == rhs.rows()
        && "invalid matrix product"
        && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
    }

    EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
    EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }

    EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
    {
      Scalar res;
      ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
     * which is why we don't set the LinearAccessBit.
     */
    EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
    {
      Scalar res;
      const Index row = RowsAtCompileTime == 1 ? 0 : index;
      const Index col = RowsAtCompileTime == 1 ? index : 0;
      ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    template<int LoadMode>
    EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
    {
      PacketScalar res;
      ei_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
                                   Unroll ? InnerSize-1 : Dynamic,
                                   _LhsNested, _RhsNested, PacketScalar, LoadMode>
        ::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    // Implicit conversion to the nested type (trigger the evaluation of the product)
    EIGEN_STRONG_INLINE operator const PlainObject& () const
    {
      m_result.lazyAssign(*this);
      return m_result;
    }

    const _LhsNested& lhs() const { return m_lhs; }
    const _RhsNested& rhs() const { return m_rhs; }

    const Diagonal<LazyCoeffBasedProductType,0> diagonal() const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }

    template<int DiagonalIndex>
    const Diagonal<LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }

    const Diagonal<LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }

  protected:
    const LhsNested m_lhs;
    const RhsNested m_rhs;

    mutable PlainObject m_result;
};

// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
template<typename Lhs, typename Rhs, int N, typename PlainObject>
struct ei_nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
{
  typedef PlainObject const& type;
};

/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/

/**************************************
*** Scalar path  - no vectorization ***
**************************************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    ei_product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
    res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    res = lhs.coeff(row, 0) * rhs.coeff(0, col);
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
  {
    ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = lhs.coeff(row, 0) * rhs.coeff(0, col);
      for(Index i = 1; i < lhs.cols(); ++i)
        res += lhs.coeff(row, i) * rhs.coeff(i, col);
  }
};

/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
struct ei_product_coeff_vectorized_unroller
{
  typedef typename Lhs::Index Index;
  enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
  {
    ei_product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
    pres = ei_padd(pres, ei_pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
  }
};

template<typename Lhs, typename Rhs, typename Packet>
struct ei_product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
  {
    pres = ei_pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
  }
};

template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::PacketScalar Packet;
  typedef typename Lhs::Index Index;
  enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    Packet pres;
    ei_product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
    ei_product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
    res = ei_predux(pres);
  }
};

template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct ei_product_coeff_vectorized_dyn_selector
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
  }
};

// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
  }
};

template<typename Lhs, typename Rhs, int LhsRows>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
  }
};

template<typename Lhs, typename Rhs>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.transpose().cwiseProduct(rhs).sum();
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
  }
};

/*******************
*** Packet path  ***
*******************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    ei_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
    res =  ei_pmadd(ei_pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
  }
};

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    ei_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
    res =  ei_pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), ei_pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    res = ei_pmul(ei_pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1<Packet>(rhs.coeff(0, col)));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
  {
    ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = ei_pmul(ei_pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
      for(Index i = 1; i < lhs.cols(); ++i)
        res =  ei_pmadd(ei_pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct ei_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
  {
    ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1<Packet>(rhs.coeff(0, col)));
      for(Index i = 1; i < lhs.cols(); ++i)
        res =  ei_pmadd(lhs.template packet<LoadMode>(row, i), ei_pset1<Packet>(rhs.coeff(i, col)), res);
  }
};

#endif // EIGEN_COEFFBASED_PRODUCT_H