aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/functors/NullaryFunctors.h
blob: c5836d048e2c172a04e2131137a68608b2cb72d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_NULLARY_FUNCTORS_H
#define EIGEN_NULLARY_FUNCTORS_H

namespace Eigen {

namespace internal {

template<typename Scalar>
struct scalar_constant_op {
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
  template<typename Index, typename PacketType>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp(Index, Index = 0) const { return internal::pset1<PacketType>(m_other); }
  const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_constant_op<Scalar> >
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };

template<typename Scalar> struct scalar_identity_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct functor_traits<scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };

template <typename Scalar, typename Packet, bool RandomAccess, bool IsInteger> struct linspaced_op_impl;

// linear access for packet ops:
// 1) initialization
//   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
// 2) each step (where size is 1 for coeff access or PacketSize for packet access)
//   base += [size*step, ..., size*step]
//
// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
//       in order to avoid the padd() in operator() ?
template <typename Scalar, typename Packet>
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/false,/*IsInteger*/false>
{
  linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
    m_low(low), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
    m_packetStep(pset1<Packet>(unpacket_traits<Packet>::size*m_step)),
    m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(m_step),plset<Packet>(-unpacket_traits<Packet>::size)))) {}

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index i) const 
  { 
    m_base = padd(m_base, pset1<Packet>(m_step));
    return m_low+Scalar(i)*m_step; 
  }

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_packetStep;
  mutable Packet m_base;
};

// random access for packet ops:
// 1) each step
//   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
template <typename Scalar, typename Packet>
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/true,/*IsInteger*/false>
{
  linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
    m_low(low), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
    m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Packet>(0)) {}

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
  { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_lowPacket;
  const Packet m_stepPacket;
  const Packet m_interPacket;
};

template <typename Scalar, typename Packet>
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/true,/*IsInteger*/true>
{
  linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
    m_low(low), m_length(high-low), m_divisor(num_steps==1?1:num_steps-1), m_interPacket(plset<Packet>(0))
  {}

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  const Scalar operator() (Index i) const {
    return m_low + (m_length*Scalar(i))/m_divisor;
  }

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  const Packet packetOp(Index i) const {
    return internal::padd(pset1<Packet>(m_low), pdiv(pmul(pset1<Packet>(m_length), padd(pset1<Packet>(Scalar(i)),m_interPacket)),
                                                     pset1<Packet>(m_divisor))); }

  const Scalar m_low;
  const Scalar m_length;
  const Index  m_divisor;
  const Packet m_interPacket;
};

// ----- Linspace functor ----------------------------------------------------------------

// Forward declaration (we default to random access which does not really give
// us a speed gain when using packet access but it allows to use the functor in
// nested expressions).
template <typename Scalar, typename PacketType, bool RandomAccess = true> struct linspaced_op;
template <typename Scalar, typename PacketType, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,PacketType,RandomAccess> >
{
  enum
  {
    Cost = 1,
    PacketAccess =   packet_traits<Scalar>::HasSetLinear
                  && ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),
    IsRepeatable = true
  };
};
template <typename Scalar, typename PacketType, bool RandomAccess> struct linspaced_op
{
  linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
    : impl((num_steps==1 ? high : low),high,num_steps)
  {}

  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 
  {
    eigen_assert(col==0 || row==0);
    return impl(col + row);
  }

  template<typename Index, typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index, typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
  {
    eigen_assert(col==0 || row==0);
    return impl.packetOp(col + row);
  }

  // This proxy object handles the actual required temporaries, the different
  // implementations (random vs. sequential access) as well as the
  // correct piping to size 2/4 packet operations.
  // As long as we don't have a Bresenham-like implementation for linear-access and integer types,
  // we have to by-pass RandomAccess for integer types. See bug 698.
  const linspaced_op_impl<Scalar,PacketType,(NumTraits<Scalar>::IsInteger?true:RandomAccess),NumTraits<Scalar>::IsInteger> impl;
};

// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// scalar_identity_op.
template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_NULLARY_FUNCTORS_H