aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/SSE/PacketMath.h
blob: ffd6aebeb0fc776660d120f654ec0d41c0f4315a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PACKET_MATH_SSE_H
#define EIGEN_PACKET_MATH_SSE_H

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
#endif

template<> struct ei_packet_traits<float>  { typedef __m128  type; enum {size=4}; };
template<> struct ei_packet_traits<double> { typedef __m128d type; enum {size=2}; };
template<> struct ei_packet_traits<int>    { typedef __m128i type; enum {size=4}; };

template<> inline __m128  ei_padd(const __m128&  a, const __m128&  b) { return _mm_add_ps(a,b); }
template<> inline __m128d ei_padd(const __m128d& a, const __m128d& b) { return _mm_add_pd(a,b); }
template<> inline __m128i ei_padd(const __m128i& a, const __m128i& b) { return _mm_add_epi32(a,b); }

template<> inline __m128  ei_psub(const __m128&  a, const __m128&  b) { return _mm_sub_ps(a,b); }
template<> inline __m128d ei_psub(const __m128d& a, const __m128d& b) { return _mm_sub_pd(a,b); }
template<> inline __m128i ei_psub(const __m128i& a, const __m128i& b) { return _mm_sub_epi32(a,b); }

template<> inline __m128  ei_pmul(const __m128&  a, const __m128&  b) { return _mm_mul_ps(a,b); }
template<> inline __m128d ei_pmul(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a,b); }
template<> inline __m128i ei_pmul(const __m128i& a, const __m128i& b)
{
  return _mm_or_si128(
    _mm_and_si128(
      _mm_mul_epu32(a,b),
      _mm_setr_epi32(0xffffffff,0,0xffffffff,0)),
    _mm_slli_si128(
      _mm_and_si128(
        _mm_mul_epu32(_mm_srli_si128(a,4),_mm_srli_si128(b,4)),
        _mm_setr_epi32(0xffffffff,0,0xffffffff,0)), 4));
}

// for some weird raisons, it has to be overloaded for packet integer
template<> inline __m128i ei_pmadd(const __m128i& a, const __m128i& b, const __m128i& c) { return ei_padd(ei_pmul(a,b), c); }

template<> inline __m128  ei_pmin(const __m128&  a, const __m128&  b) { return _mm_min_ps(a,b); }
template<> inline __m128d ei_pmin(const __m128d& a, const __m128d& b) { return _mm_min_pd(a,b); }
// FIXME this vectorized min operator is likely to be slower than the standard one
template<> inline __m128i ei_pmin(const __m128i& a, const __m128i& b)
{
  __m128i mask = _mm_cmplt_epi32(a,b);
  return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}

template<> inline __m128  ei_pmax(const __m128&  a, const __m128&  b) { return _mm_max_ps(a,b); }
template<> inline __m128d ei_pmax(const __m128d& a, const __m128d& b) { return _mm_max_pd(a,b); }
// FIXME this vectorized max operator is likely to be slower than the standard one
template<> inline __m128i ei_pmax(const __m128i& a, const __m128i& b)
{
  __m128i mask = _mm_cmpgt_epi32(a,b);
  return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}

inline __m128  ei_pload(const float*   from) { return _mm_load_ps(from); }
inline __m128d ei_pload(const double*  from) { return _mm_load_pd(from); }
inline __m128i ei_pload(const int* from) { return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }

inline __m128  ei_ploadu(const float*   from) { return _mm_loadu_ps(from); }
inline __m128d ei_ploadu(const double*  from) { return _mm_loadu_pd(from); }
inline __m128i ei_ploadu(const int* from) { return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); }

inline __m128  ei_pset1(const float&  from) { return _mm_set1_ps(from); }
inline __m128d ei_pset1(const double& from) { return _mm_set1_pd(from); }
inline __m128i ei_pset1(const int&    from) { return _mm_set1_epi32(from); }

inline void ei_pstore(float*  to, const __m128&  from) { _mm_store_ps(to, from); }
inline void ei_pstore(double* to, const __m128d& from) { _mm_store_pd(to, from); }
inline void ei_pstore(int*    to, const __m128i& from) { _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }

inline void ei_pstoreu(float*  to, const __m128&  from) { _mm_storeu_ps(to, from); }
inline void ei_pstoreu(double* to, const __m128d& from) { _mm_storeu_pd(to, from); }
inline void ei_pstoreu(int*    to, const __m128i& from) { _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }

inline float  ei_pfirst(const __m128&  a) { return _mm_cvtss_f32(a); }
inline double ei_pfirst(const __m128d& a) { return _mm_cvtsd_f64(a); }
inline int    ei_pfirst(const __m128i& a) { return _mm_cvtsi128_si32(a); }

#ifdef __SSE3__
// TODO implement SSE2 versions as well as integer versions
inline __m128 ei_preduxp(const __m128* vecs)
{
  return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
}
inline __m128d ei_preduxp(const __m128d* vecs)
{
  return _mm_hadd_pd(vecs[0], vecs[1]);
}
// SSSE3 version:
// inline __m128i ei_preduxp(const __m128i* vecs)
// {
//   return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
// }

inline float ei_predux(const __m128& a)
{
  __m128 tmp0 = _mm_hadd_ps(a,a);
  return ei_pfirst(_mm_hadd_ps(tmp0, tmp0));
}

inline double ei_predux(const __m128d& a) { return ei_pfirst(_mm_hadd_pd(a, a)); }

// SSSE3 version:
// inline float ei_predux(const __m128i& a)
// {
//   __m128i tmp0 = _mm_hadd_epi32(a,a);
//   return ei_pfirst(_mm_hadd_epi32(tmp0, tmp0));
// }
#else
// SSE2 versions
inline float ei_predux(const __m128& a)
{
  __m128 tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
  return ei_pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
inline double ei_predux(const __m128d& a)
{
  return ei_pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
}

inline __m128 ei_preduxp(const __m128* vecs)
{
  __m128 tmp0, tmp1, tmp2;
  tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
  tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
  tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
  tmp0 = _mm_add_ps(tmp0, tmp1);
  tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
  tmp1 = _mm_add_ps(tmp1, tmp2);
  tmp2 = _mm_movehl_ps(tmp1, tmp0);
  tmp0 = _mm_movelh_ps(tmp0, tmp1);
  return _mm_add_ps(tmp0, tmp2);
}

inline __m128d ei_preduxp(const __m128d* vecs)
{
  return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
}
#endif  // SSE3

inline int ei_predux(const __m128i& a)
{
  __m128i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
  return ei_pfirst(tmp) + ei_pfirst(_mm_shuffle_epi32(tmp, 1));
}

inline __m128i ei_preduxp(const __m128i* vecs)
{
  __m128i tmp0, tmp1, tmp2;
  tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
  tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
  tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
  tmp0 = _mm_add_epi32(tmp0, tmp1);
  tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
  tmp1 = _mm_add_epi32(tmp1, tmp2);
  tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
  tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
  return _mm_add_epi32(tmp0, tmp2);
}

#endif // EIGEN_PACKET_MATH_SSE_H