aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/SSE/PacketMath.h
blob: a3b4b67fdfd3c970bfcbbe98da4af804ec93d7d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PACKET_MATH_SSE_H
#define EIGEN_PACKET_MATH_SSE_H

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
#endif

template<> struct ei_packet_traits<float>  { typedef __m128  type; enum {size=4}; };
template<> struct ei_packet_traits<double> { typedef __m128d type; enum {size=2}; };
template<> struct ei_packet_traits<int>    { typedef __m128i type; enum {size=4}; };

template<> struct ei_unpacket_traits<__m128>  { typedef float  type; enum {size=4}; };
template<> struct ei_unpacket_traits<__m128d> { typedef double type; enum {size=2}; };
template<> struct ei_unpacket_traits<__m128i> { typedef int    type; enum {size=4}; };

template<> EIGEN_STRONG_INLINE __m128  ei_pset1<float>(const float&  from) { return _mm_set1_ps(from); }
template<> EIGEN_STRONG_INLINE __m128d ei_pset1<double>(const double& from) { return _mm_set1_pd(from); }
template<> EIGEN_STRONG_INLINE __m128i ei_pset1<int>(const int&    from) { return _mm_set1_epi32(from); }

template<> EIGEN_STRONG_INLINE __m128  ei_padd<__m128>(const __m128&  a, const __m128&  b) { return _mm_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_padd<__m128d>(const __m128d& a, const __m128d& b) { return _mm_add_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_padd<__m128i>(const __m128i& a, const __m128i& b) { return _mm_add_epi32(a,b); }

template<> EIGEN_STRONG_INLINE __m128  ei_psub<__m128>(const __m128&  a, const __m128&  b) { return _mm_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_psub<__m128d>(const __m128d& a, const __m128d& b) { return _mm_sub_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_psub<__m128i>(const __m128i& a, const __m128i& b) { return _mm_sub_epi32(a,b); }

template<> EIGEN_STRONG_INLINE __m128  ei_pmul<__m128>(const __m128&  a, const __m128&  b) { return _mm_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_pmul<__m128d>(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_pmul<__m128i>(const __m128i& a, const __m128i& b)
{
  // this version is very slightly faster than 4 scalar products
  return _mm_or_si128(
    _mm_and_si128(
      _mm_mul_epu32(a,b),
      _mm_setr_epi32(0xffffffff,0,0xffffffff,0)),
    _mm_slli_si128(
      _mm_and_si128(
        _mm_mul_epu32(_mm_srli_si128(a,4),_mm_srli_si128(b,4)),
        _mm_setr_epi32(0xffffffff,0,0xffffffff,0)), 4));
}

template<> EIGEN_STRONG_INLINE __m128  ei_pdiv<__m128>(const __m128&  a, const __m128&  b) { return _mm_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_pdiv<__m128d>(const __m128d& a, const __m128d& b) { return _mm_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_pdiv<__m128i>(const __m128i& /*a*/, const __m128i& /*b*/)
{ ei_assert(false && "packet integer division are not supported by SSE");
  __m128i dummy = ei_pset1<int>(0);
  return dummy;
}

// for some weird raisons, it has to be overloaded for packet integer
template<> EIGEN_STRONG_INLINE __m128i ei_pmadd(const __m128i& a, const __m128i& b, const __m128i& c) { return ei_padd(ei_pmul(a,b), c); }

template<> EIGEN_STRONG_INLINE __m128  ei_pmin<__m128>(const __m128&  a, const __m128&  b) { return _mm_min_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_pmin<__m128d>(const __m128d& a, const __m128d& b) { return _mm_min_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_pmin<__m128i>(const __m128i& a, const __m128i& b)
{
  // after some bench, this version *is* faster than a scalar implementation
  __m128i mask = _mm_cmplt_epi32(a,b);
  return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}

template<> EIGEN_STRONG_INLINE __m128  ei_pmax<__m128>(const __m128&  a, const __m128&  b) { return _mm_max_ps(a,b); }
template<> EIGEN_STRONG_INLINE __m128d ei_pmax<__m128d>(const __m128d& a, const __m128d& b) { return _mm_max_pd(a,b); }
template<> EIGEN_STRONG_INLINE __m128i ei_pmax<__m128i>(const __m128i& a, const __m128i& b)
{
  // after some bench, this version *is* faster than a scalar implementation
  __m128i mask = _mm_cmpgt_epi32(a,b);
  return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}

template<> EIGEN_STRONG_INLINE __m128  ei_pload<float>(const float*   from) { return _mm_load_ps(from); }
template<> EIGEN_STRONG_INLINE __m128d ei_pload<double>(const double*  from) { return _mm_load_pd(from); }
template<> EIGEN_STRONG_INLINE __m128i ei_pload<int>(const int* from) { return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }

template<> EIGEN_STRONG_INLINE __m128  ei_ploadu(const float*   from) {
  __m128 r;
  r = _mm_castpd_ps(_mm_load_sd((double*)(from)));
  r = _mm_loadh_pi(r, (const __m64*)(from+2));
  return r;
}
template<> EIGEN_STRONG_INLINE __m128d ei_ploadu<double>(const double*  from) { return _mm_castps_pd(ei_ploadu((const float*)(from))); }
template<> EIGEN_STRONG_INLINE __m128i ei_ploadu<int>(const int* from) { return _mm_castpd_si128(ei_ploadu((const double*)(from))); }

template<> EIGEN_STRONG_INLINE void ei_pstore<float>(float*   to, const __m128&  from) { _mm_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void ei_pstore<double>(double* to, const __m128d& from) { _mm_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void ei_pstore<int>(int*       to, const __m128i& from) { _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }

template<> EIGEN_STRONG_INLINE void ei_pstoreu<double>(double* to, const __m128d& from) {
  _mm_storel_pd((to), from);
  _mm_storeh_pd((to+1), from);
}
template<> EIGEN_STRONG_INLINE void ei_pstoreu<float>(float*  to, const __m128&  from) { ei_pstoreu((double*)to, _mm_castps_pd(from)); }
template<> EIGEN_STRONG_INLINE void ei_pstoreu<int>(int*      to, const __m128i& from) { ei_pstoreu((double*)to, _mm_castsi128_pd(from)); }

#ifdef _MSC_VER
// this fix internal compilation error
template<> EIGEN_STRONG_INLINE float  ei_pfirst<__m128>(const __m128&  a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double ei_pfirst<__m128d>(const __m128d& a) { double x = _mm_cvtsd_f64(a); return x; }
template<> EIGEN_STRONG_INLINE int    ei_pfirst<__m128i>(const __m128i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#else
template<> EIGEN_STRONG_INLINE float  ei_pfirst<__m128>(const __m128&  a) { return _mm_cvtss_f32(a); }
template<> EIGEN_STRONG_INLINE double ei_pfirst<__m128d>(const __m128d& a) { return _mm_cvtsd_f64(a); }
template<> EIGEN_STRONG_INLINE int    ei_pfirst<__m128i>(const __m128i& a) { return _mm_cvtsi128_si32(a); }
#endif

template<> EIGEN_STRONG_INLINE __m128 ei_preverse(const __m128& a)
{ return _mm_shuffle_ps(a,a,0x1B); }
template<> EIGEN_STRONG_INLINE __m128d ei_preverse(const __m128d& a)
{ return _mm_shuffle_pd(a,a,0x1); }
template<> EIGEN_STRONG_INLINE __m128i ei_preverse(const __m128i& a)
{ return _mm_shuffle_epi32(a,0x1B); }

#ifdef __SSE3__
// TODO implement SSE2 versions as well as integer versions
template<> EIGEN_STRONG_INLINE __m128 ei_preduxp<__m128>(const __m128* vecs)
{
  return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE __m128d ei_preduxp<__m128d>(const __m128d* vecs)
{
  return _mm_hadd_pd(vecs[0], vecs[1]);
}
// SSSE3 version:
// EIGEN_STRONG_INLINE __m128i ei_preduxp(const __m128i* vecs)
// {
//   return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
// }

template<> EIGEN_STRONG_INLINE float ei_predux<__m128>(const __m128& a)
{
  __m128 tmp0 = _mm_hadd_ps(a,a);
  return ei_pfirst(_mm_hadd_ps(tmp0, tmp0));
}

template<> EIGEN_STRONG_INLINE double ei_predux<__m128d>(const __m128d& a) { return ei_pfirst(_mm_hadd_pd(a, a)); }

// SSSE3 version:
// EIGEN_STRONG_INLINE float ei_predux(const __m128i& a)
// {
//   __m128i tmp0 = _mm_hadd_epi32(a,a);
//   return ei_pfirst(_mm_hadd_epi32(tmp0, tmp0));
// }
#else
// SSE2 versions
template<> EIGEN_STRONG_INLINE float ei_predux<__m128>(const __m128& a)
{
  __m128 tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
  return ei_pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double ei_predux<__m128d>(const __m128d& a)
{
  return ei_pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
}

template<> EIGEN_STRONG_INLINE __m128 ei_preduxp<__m128>(const __m128* vecs)
{
  __m128 tmp0, tmp1, tmp2;
  tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
  tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
  tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
  tmp0 = _mm_add_ps(tmp0, tmp1);
  tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
  tmp1 = _mm_add_ps(tmp1, tmp2);
  tmp2 = _mm_movehl_ps(tmp1, tmp0);
  tmp0 = _mm_movelh_ps(tmp0, tmp1);
  return _mm_add_ps(tmp0, tmp2);
}

template<> EIGEN_STRONG_INLINE __m128d ei_preduxp<__m128d>(const __m128d* vecs)
{
  return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
}
#endif  // SSE3

template<> EIGEN_STRONG_INLINE int ei_predux<__m128i>(const __m128i& a)
{
  __m128i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
  return ei_pfirst(tmp) + ei_pfirst(_mm_shuffle_epi32(tmp, 1));
}

template<> EIGEN_STRONG_INLINE __m128i ei_preduxp<__m128i>(const __m128i* vecs)
{
  __m128i tmp0, tmp1, tmp2;
  tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
  tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
  tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
  tmp0 = _mm_add_epi32(tmp0, tmp1);
  tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
  tmp1 = _mm_add_epi32(tmp1, tmp2);
  tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
  tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
  return _mm_add_epi32(tmp0, tmp2);
}

// Other reduction functions:

// mul
template<> EIGEN_STRONG_INLINE float ei_predux_mul<__m128>(const __m128& a)
{
  __m128 tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
  return ei_pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double ei_predux_mul<__m128d>(const __m128d& a)
{
  return ei_pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int ei_predux_mul<__m128i>(const __m128i& a)
{
  // after some experiments, it is seems this is the fastest way to implement it
  // for GCC (eg., reusing ei_pmul is very slow !)
  // TODO try to call _mm_mul_epu32 directly
  EIGEN_ALIGN_128 int aux[4];
  ei_pstore(aux, a);
  return  (aux[0] * aux[1]) * (aux[2] * aux[3]);;
}

// min
template<> EIGEN_STRONG_INLINE float ei_predux_min<__m128>(const __m128& a)
{
  __m128 tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
  return ei_pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double ei_predux_min<__m128d>(const __m128d& a)
{
  return ei_pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int ei_predux_min<__m128i>(const __m128i& a)
{
  // after some experiments, it is seems this is the fastest way to implement it
  // for GCC (eg., it does not like using std::min after the ei_pstore !!)
  EIGEN_ALIGN_128 int aux[4];
  ei_pstore(aux, a);
  register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
  register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
  return aux0<aux2 ? aux0 : aux2;
}

// max
template<> EIGEN_STRONG_INLINE float ei_predux_max<__m128>(const __m128& a)
{
  __m128 tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
  return ei_pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double ei_predux_max<__m128d>(const __m128d& a)
{
  return ei_pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int ei_predux_max<__m128i>(const __m128i& a)
{
  // after some experiments, it is seems this is the fastest way to implement it
  // for GCC (eg., it does not like using std::min after the ei_pstore !!)
  EIGEN_ALIGN_128 int aux[4];
  ei_pstore(aux, a);
  register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
  register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
  return aux0>aux2 ? aux0 : aux2;
}

#if (defined __GNUC__)
// template <> EIGEN_STRONG_INLINE __m128 ei_pmadd(const __m128&  a, const __m128&  b, const __m128&  c)
// {
//   __m128 res = b;
//   asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
//   return res;
// }
// EIGEN_STRONG_INLINE __m128i _mm_alignr_epi8(const __m128i&  a, const __m128i&  b, const int i)
// {
//   __m128i res = a;
//   asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
//   return res;
// }
#endif

#ifdef __SSSE3__
// SSSE3 versions
template<int Offset>
struct ei_palign_impl<Offset,__m128>
{
  EIGEN_STRONG_INLINE static void run(__m128& first, const __m128& second)
  {
    if (Offset!=0)
      first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
  }
};

template<int Offset>
struct ei_palign_impl<Offset,__m128i>
{
  EIGEN_STRONG_INLINE static void run(__m128i& first, const __m128i& second)
  {
    if (Offset!=0)
      first = _mm_alignr_epi8(second,first, Offset*4);
  }
};

template<int Offset>
struct ei_palign_impl<Offset,__m128d>
{
  EIGEN_STRONG_INLINE static void run(__m128d& first, const __m128d& second)
  {
    if (Offset==1)
      first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
  }
};
#else
// SSE2 versions
template<int Offset>
struct ei_palign_impl<Offset,__m128>
{
  EIGEN_STRONG_INLINE static void run(__m128& first, const __m128& second)
  {
    if (Offset==1)
    {
      first = _mm_move_ss(first,second);
      first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
    }
    else if (Offset==2)
    {
      first = _mm_movehl_ps(first,first);
      first = _mm_movelh_ps(first,second);
    }
    else if (Offset==3)
    {
      first = _mm_move_ss(first,second);
      first = _mm_shuffle_ps(first,second,0x93);
    }
  }
};

template<int Offset>
struct ei_palign_impl<Offset,__m128i>
{
  EIGEN_STRONG_INLINE static void run(__m128i& first, const __m128i& second)
  {
    if (Offset==1)
    {
      first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
      first = _mm_shuffle_epi32(first,0x39);
    }
    else if (Offset==2)
    {
      first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
      first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
    }
    else if (Offset==3)
    {
      first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
      first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
    }
  }
};

template<int Offset>
struct ei_palign_impl<Offset,__m128d>
{
  EIGEN_STRONG_INLINE static void run(__m128d& first, const __m128d& second)
  {
    if (Offset==1)
    {
      first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
      first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
    }
  }
};
#endif

#endif // EIGEN_PACKET_MATH_SSE_H