aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/SSE/MathFunctions.h
blob: 9e699244e17b65c272483b619b33c9c5610fe5a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The sin and cos and functions of this file come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
#define EIGEN_MATH_FUNCTIONS_SSE_H

#include "../Default/GenericPacketMathFunctions.h"

namespace Eigen {

namespace internal {

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f plog<Packet4f>(const Packet4f& _x)
{
  return plog_float(_x);
}

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
  return pexp_float(_x);
}

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& x)
{
  return pexp_double(x);
}

/* evaluation of 4 sines at once, using SSE2 intrinsics.

   The code is the exact rewriting of the cephes sinf function.
   Precision is excellent as long as x < 8192 (I did not bother to
   take into account the special handling they have for greater values
   -- it does not return garbage for arguments over 8192, though, but
   the extra precision is missing).

   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
   surprising but correct result.
*/

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psin<Packet4f>(const Packet4f& _x)
{
  return psin_float(_x);
}

/* almost the same as psin */
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pcos<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);

  _EIGEN_DECLARE_CONST_Packet4i(1, 1);
  _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
  _EIGEN_DECLARE_CONST_Packet4i(2, 2);
  _EIGEN_DECLARE_CONST_Packet4i(4, 4);

  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI

  Packet4f xmm1, xmm2, xmm3, y;
  Packet4i emm0, emm2;

  x = pabs(x);

  /* scale by 4/Pi */
  y = pmul(x, p4f_cephes_FOPI);

  /* get the integer part of y */
  emm2 = _mm_cvttps_epi32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  emm2 = _mm_add_epi32(emm2, p4i_1);
  emm2 = _mm_and_si128(emm2, p4i_not1);
  y = _mm_cvtepi32_ps(emm2);

  emm2 = _mm_sub_epi32(emm2, p4i_2);

  /* get the swap sign flag */
  emm0 = _mm_andnot_si128(emm2, p4i_4);
  emm0 = _mm_slli_epi32(emm0, 29);
  /* get the polynom selection mask */
  emm2 = _mm_and_si128(emm2, p4i_2);
  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());

  Packet4f sign_bit = _mm_castsi128_ps(emm0);
  Packet4f poly_mask = _mm_castsi128_ps(emm2);

  /* The magic pass: "Extended precision modular arithmetic"
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = pmul(y, p4f_minus_cephes_DP1);
  xmm2 = pmul(y, p4f_minus_cephes_DP2);
  xmm3 = pmul(y, p4f_minus_cephes_DP3);
  x = padd(x, xmm1);
  x = padd(x, xmm2);
  x = padd(x, xmm3);

  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  y = p4f_coscof_p0;
  Packet4f z = pmul(x,x);

  y = pmadd(y,z,p4f_coscof_p1);
  y = pmadd(y,z,p4f_coscof_p2);
  y = pmul(y, z);
  y = pmul(y, z);
  Packet4f tmp = _mm_mul_ps(z, p4f_half);
  y = psub(y, tmp);
  y = padd(y, p4f_1);

  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
  Packet4f y2 = p4f_sincof_p0;
  y2 = pmadd(y2, z, p4f_sincof_p1);
  y2 = pmadd(y2, z, p4f_sincof_p2);
  y2 = pmul(y2, z);
  y2 = pmadd(y2, x, x);

  /* select the correct result from the two polynoms */
  y2 = _mm_and_ps(poly_mask, y2);
  y  = _mm_andnot_ps(poly_mask, y);
  y  = _mm_or_ps(y,y2);

  /* update the sign */
  return _mm_xor_ps(y, sign_bit);
}

#if EIGEN_FAST_MATH

// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. It does not handle +inf, or denormalized numbers correctly.
// The main advantage of this approach is not just speed, but also the fact that
// it can be inlined and pipelined with other computations, further reducing its
// effective latency. This is similar to Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& _x)
{
  Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
  Packet4f denormal_mask = _mm_and_ps(
      _mm_cmpge_ps(_x, _mm_setzero_ps()),
      _mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));

  // Compute approximate reciprocal sqrt.
  Packet4f x = _mm_rsqrt_ps(_x);
  // Do a single step of Newton's iteration.
  x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
  // Flush results for denormals to zero.
  return _mm_andnot_ps(denormal_mask, pmul(_x,x));
}

#else

template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }

#endif

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }

#if EIGEN_FAST_MATH

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000u);
  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000u);
  _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f);
  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000u);

  Packet4f neg_half = pmul(_x, p4f_minus_half);

  // select only the inverse sqrt of positive normal inputs (denormals are
  // flushed to zero and cause infs as well).
  Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min);
  Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x));

  // Fill in NaNs and Infs for the negative/zero entries.
  Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
  Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
  Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
                                     _mm_and_ps(zero_mask, p4f_inf));

  // Do a single step of Newton's iteration.
  x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));

  // Insert NaNs and Infs in all the right places.
  return _mm_or_ps(x, infs_and_nans);
}

#else

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f prsqrt<Packet4f>(const Packet4f& x) {
  // Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation.
  return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x));
}

#endif

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d prsqrt<Packet2d>(const Packet2d& x) {
  // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
  return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x));
}

// Hyperbolic Tangent function.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
ptanh<Packet4f>(const Packet4f& x) {
  return internal::generic_fast_tanh_float(x);
}

} // end namespace internal

namespace numext {

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sqrt(const float &x)
{
  return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x))));
}

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sqrt(const double &x)
{
#if EIGEN_COMP_GNUC_STRICT
  // This works around a GCC bug generating poor code for _mm_sqrt_pd
  // See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b
  return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
#else
  return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
#endif
}

} // end namespace numex

} // end namespace Eigen

#endif // EIGEN_MATH_FUNCTIONS_SSE_H