1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
// Heavily based on Gael's SSE version.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_NEON_H
#define EIGEN_PACKET_MATH_NEON_H
namespace Eigen {
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif
typedef float32x2_t Packet2f;
typedef float32x4_t Packet4f;
typedef int32x4_t Packet4i;
typedef int32x2_t Packet2i;
typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#elif defined __pld
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
#elif !EIGEN_ARCH_ARM64
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#else
// by default no explicit prefetching
#define EIGEN_ARM_PREFETCH(ADDR)
#endif
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
typedef Packet4f half; // Packet2f intrinsics not implemented yet
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket=0, // Packet2f intrinsics not implemented yet
HasDiv = 1,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 0
};
};
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half; // Packet2i intrinsics not implemented yet
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasHalfPacket=0 // Packet2i intrinsics not implemented yet
// FIXME check the Has*
};
};
#if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return vdupq_n_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
{
const float32_t f[] = {0, 1, 2, 3};
Packet4f countdown = vld1q_f32(f);
return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a)
{
const int32_t i[] = {0, 1, 2, 3};
Packet4i countdown = vld1q_s32(i);
return vaddq_s32(pset1<Packet4i>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
#if EIGEN_ARCH_ARM64
return vdivq_f32(a,b);
#else
Packet4f inv, restep, div;
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
// However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
// a reciprocal estimate AND a reciprocal step -which saves a few instructions
// vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
// Newton-Raphson and vrecpsq_f32()
inv = vrecpeq_f32(b);
// This returns a differential, by which we will have to multiply inv to get a better
// approximation of 1/b.
restep = vrecpsq_f32(b, inv);
inv = vmulq_f32(restep, inv);
// Finally, multiply a by 1/b and get the wanted result of the division.
div = vmulq_f32(a, inv);
return div;
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
return pset1<Packet4i>(0);
}
// Clang/ARM wrongly advertises __ARM_FEATURE_FMA even when it's not available,
// then implements a slow software scalar fallback calling fmaf()!
// Filed LLVM bug:
// https://llvm.org/bugs/show_bug.cgi?id=27216
#if (defined __ARM_FEATURE_FMA) && !(EIGEN_COMP_CLANG && EIGEN_ARCH_ARM)
// See bug 936.
// FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4.
// FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding.
// MLA is not fused i.e. does 2 roundings.
// In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4):
// MLA: 10 GFlop/s ; FMA: 12 GFlops/s.
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) {
#if EIGEN_COMP_CLANG && EIGEN_ARCH_ARM
// Clang/ARM will replace VMLA by VMUL+VADD at least for some values of -mcpu,
// at least -mcpu=cortex-a8 and -mcpu=cortex-a7. Since the former is the default on
// -march=armv7-a, that is a very common case.
// See e.g. this thread:
// http://lists.llvm.org/pipermail/llvm-dev/2013-December/068806.html
// Filed LLVM bug:
// https://llvm.org/bugs/show_bug.cgi?id=27219
Packet4f r = c;
asm volatile(
"vmla.f32 %q[r], %q[a], %q[b]"
: [r] "+w" (r)
: [a] "w" (a),
[b] "w" (b)
: );
return r;
#else
return vmlaq_f32(c,a,b);
#endif
}
#endif
// No FMA instruction for int, so use MLA unconditionally.
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
float32x2_t lo, hi;
lo = vld1_dup_f32(from);
hi = vld1_dup_f32(from+1);
return vcombine_f32(lo, hi);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
int32x2_t lo, hi;
lo = vld1_dup_s32(from);
hi = vld1_dup_s32(from+1);
return vcombine_s32(lo, hi);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
Packet4f res = pset1<Packet4f>(0.f);
res = vsetq_lane_f32(from[0*stride], res, 0);
res = vsetq_lane_f32(from[1*stride], res, 1);
res = vsetq_lane_f32(from[2*stride], res, 2);
res = vsetq_lane_f32(from[3*stride], res, 3);
return res;
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
Packet4i res = pset1<Packet4i>(0);
res = vsetq_lane_s32(from[0*stride], res, 0);
res = vsetq_lane_s32(from[1*stride], res, 1);
res = vsetq_lane_s32(from[2*stride], res, 2);
res = vsetq_lane_s32(from[3*stride], res, 3);
return res;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
to[stride*0] = vgetq_lane_f32(from, 0);
to[stride*1] = vgetq_lane_f32(from, 1);
to[stride*2] = vgetq_lane_f32(from, 2);
to[stride*3] = vgetq_lane_f32(from, 3);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
to[stride*0] = vgetq_lane_s32(from, 0);
to[stride*1] = vgetq_lane_s32(from, 1);
to[stride*2] = vgetq_lane_s32(from, 2);
to[stride*3] = vgetq_lane_s32(from, 3);
}
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ARM_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ARM_PREFETCH(addr); }
// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
float32x2_t a_lo, a_hi;
Packet4f a_r64;
a_r64 = vrev64q_f32(a);
a_lo = vget_low_f32(a_r64);
a_hi = vget_high_f32(a_r64);
return vcombine_f32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
int32x2_t a_lo, a_hi;
Packet4i a_r64;
a_r64 = vrev64q_s32(a);
a_lo = vget_low_s32(a_r64);
a_hi = vget_high_s32(a_r64);
return vcombine_s32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, sum;
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
sum = vpadd_f32(a_lo, a_hi);
sum = vpadd_f32(sum, sum);
return vget_lane_f32(sum, 0);
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
float32x4x2_t vtrn1, vtrn2, res1, res2;
Packet4f sum1, sum2, sum;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
vtrn1 = vzipq_f32(vecs[0], vecs[2]);
vtrn2 = vzipq_f32(vecs[1], vecs[3]);
res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
// Do the addition of the resulting vectors
sum1 = vaddq_f32(res1.val[0], res1.val[1]);
sum2 = vaddq_f32(res2.val[0], res2.val[1]);
sum = vaddq_f32(sum1, sum2);
return sum;
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, sum;
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
sum = vpadd_s32(a_lo, a_hi);
sum = vpadd_s32(sum, sum);
return vget_lane_s32(sum, 0);
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
int32x4x2_t vtrn1, vtrn2, res1, res2;
Packet4i sum1, sum2, sum;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
vtrn1 = vzipq_s32(vecs[0], vecs[2]);
vtrn2 = vzipq_s32(vecs[1], vecs[3]);
res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
// Do the addition of the resulting vectors
sum1 = vaddq_s32(res1.val[0], res1.val[1]);
sum2 = vaddq_s32(res2.val[0], res2.val[1]);
sum = vaddq_s32(sum1, sum2);
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, prod;
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
prod = vmul_f32(a_lo, a_hi);
// Multiply prod with its swapped value |a2*a4|a1*a3|
prod = vmul_f32(prod, vrev64_f32(prod));
return vget_lane_f32(prod, 0);
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, prod;
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
prod = vmul_s32(a_lo, a_hi);
// Multiply prod with its swapped value |a2*a4|a1*a3|
prod = vmul_s32(prod, vrev64_s32(prod));
return vget_lane_s32(prod, 0);
}
// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, min;
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
min = vpmin_f32(a_lo, a_hi);
min = vpmin_f32(min, min);
return vget_lane_f32(min, 0);
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, min;
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
min = vpmin_s32(a_lo, a_hi);
min = vpmin_s32(min, min);
return vget_lane_s32(min, 0);
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, max;
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
max = vpmax_f32(a_lo, a_hi);
max = vpmax_f32(max, max);
return vget_lane_f32(max, 0);
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, max;
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
max = vpmax_s32(a_lo, a_hi);
max = vpmax_s32(max, max);
return vget_lane_s32(max, 0);
}
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
#define PALIGN_NEON(Offset,Type,Command) \
template<>\
struct palign_impl<Offset,Type>\
{\
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
{\
if (Offset!=0)\
first = Command(first, second, Offset);\
}\
};\
PALIGN_NEON(0,Packet4f,vextq_f32)
PALIGN_NEON(1,Packet4f,vextq_f32)
PALIGN_NEON(2,Packet4f,vextq_f32)
PALIGN_NEON(3,Packet4f,vextq_f32)
PALIGN_NEON(0,Packet4i,vextq_s32)
PALIGN_NEON(1,Packet4i,vextq_s32)
PALIGN_NEON(2,Packet4i,vextq_s32)
PALIGN_NEON(3,Packet4i,vextq_s32)
#undef PALIGN_NEON
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
float32x4x2_t tmp1 = vzipq_f32(kernel.packet[0], kernel.packet[1]);
float32x4x2_t tmp2 = vzipq_f32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = vcombine_f32(vget_low_f32(tmp1.val[0]), vget_low_f32(tmp2.val[0]));
kernel.packet[1] = vcombine_f32(vget_high_f32(tmp1.val[0]), vget_high_f32(tmp2.val[0]));
kernel.packet[2] = vcombine_f32(vget_low_f32(tmp1.val[1]), vget_low_f32(tmp2.val[1]));
kernel.packet[3] = vcombine_f32(vget_high_f32(tmp1.val[1]), vget_high_f32(tmp2.val[1]));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
int32x4x2_t tmp1 = vzipq_s32(kernel.packet[0], kernel.packet[1]);
int32x4x2_t tmp2 = vzipq_s32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = vcombine_s32(vget_low_s32(tmp1.val[0]), vget_low_s32(tmp2.val[0]));
kernel.packet[1] = vcombine_s32(vget_high_s32(tmp1.val[0]), vget_high_s32(tmp2.val[0]));
kernel.packet[2] = vcombine_s32(vget_low_s32(tmp1.val[1]), vget_low_s32(tmp2.val[1]));
kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1]));
}
//---------- double ----------
// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double.
// Confirmed at least with __apple_build_version__ = 6000054.
#ifdef __apple_build_version__
// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed.
// https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with
// major toolchain updates.
#define EIGEN_APPLE_DOUBLE_NEON_BUG (__apple_build_version__ < 6010000)
#else
#define EIGEN_APPLE_DOUBLE_NEON_BUG 0
#endif
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
// Bug 907: workaround missing declarations of the following two functions in the ADK
// Defining these functions as templates ensures that if these intrinsics are
// already defined in arm_neon.h, then our workaround doesn't cause a conflict
// and has lower priority in overload resolution.
template <typename T>
uint64x2_t vreinterpretq_u64_f64(T a)
{
return (uint64x2_t) a;
}
template <typename T>
float64x2_t vreinterpretq_f64_u64(T a)
{
return (float64x2_t) a;
}
typedef float64x2_t Packet2d;
typedef float64x1_t Packet1d;
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket=0,
HasDiv = 1,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasSqrt = 0
};
};
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return vdupq_n_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a)
{
const double countdown_raw[] = {0.0,1.0};
const Packet2d countdown = vld1q_f64(countdown_raw);
return vaddq_f64(pset1<Packet2d>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); }
#ifdef __ARM_FEATURE_FMA
// See bug 936. See above comment about FMA for float.
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); }
#else
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); }
#endif
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
return vld1q_dup_f64(from);
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); }
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
Packet2d res = pset1<Packet2d>(0.0);
res = vsetq_lane_f64(from[0*stride], res, 0);
res = vsetq_lane_f64(from[1*stride], res, 1);
return res;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
to[stride*0] = vgetq_lane_f64(from, 0);
to[stride*1] = vgetq_lane_f64(from, 1);
}
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ARM_PREFETCH(addr); }
// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(a, 0); }
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); }
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); }
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
// workaround ICE, see bug 907
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; }
#else
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); }
#endif
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
float64x2_t trn1, trn2;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
trn1 = vzip1q_f64(vecs[0], vecs[1]);
trn2 = vzip2q_f64(vecs[0], vecs[1]);
// Do the addition of the resulting vectors
return vaddq_f64(trn1, trn2);
}
// Other reduction functions:
// mul
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; }
#else
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); }
#endif
// min
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); }
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); }
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
#define PALIGN_NEON(Offset,Type,Command) \
template<>\
struct palign_impl<Offset,Type>\
{\
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
{\
if (Offset!=0)\
first = Command(first, second, Offset);\
}\
};\
PALIGN_NEON(0,Packet2d,vextq_f64)
PALIGN_NEON(1,Packet2d,vextq_f64)
#undef PALIGN_NEON
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]);
float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]);
kernel.packet[0] = trn1;
kernel.packet[1] = trn2;
}
#endif // EIGEN_ARCH_ARM64
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_NEON_H
|