aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/NEON/MathFunctions.h
blob: d218c88510d38a84bd6885aa4ef45e455c34339c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The sin, cos, exp, and log functions of this file come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

#ifndef EIGEN_MATH_FUNCTIONS_NEON_H
#define EIGEN_MATH_FUNCTIONS_NEON_H

namespace Eigen {

namespace internal {

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  Packet4f tmp, fx;

  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
  _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
  _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);

  x = vminq_f32(x, p4f_exp_hi);
  x = vmaxq_f32(x, p4f_exp_lo);

  /* express exp(x) as exp(g + n*log(2)) */
  fx = vmlaq_f32(p4f_half, x, p4f_cephes_LOG2EF);

  /* perform a floorf */
  tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));

  /* if greater, substract 1 */
  Packet4ui mask = vcgtq_f32(tmp, fx);
  mask = vandq_u32(mask, vreinterpretq_u32_f32(p4f_1));

  fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));

  tmp = vmulq_f32(fx, p4f_cephes_exp_C1);
  Packet4f z = vmulq_f32(fx, p4f_cephes_exp_C2);
  x = vsubq_f32(x, tmp);
  x = vsubq_f32(x, z);

  Packet4f y = vmulq_f32(p4f_cephes_exp_p0, x);
  z = vmulq_f32(x, x);
  y = vaddq_f32(y, p4f_cephes_exp_p1);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_exp_p2);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_exp_p3);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_exp_p4);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_exp_p5);

  y = vmulq_f32(y, z);
  y = vaddq_f32(y, x);
  y = vaddq_f32(y, p4f_1);

  /* build 2^n */
  int32x4_t mm;
  mm = vcvtq_s32_f32(fx);
  mm = vaddq_s32(mm, p4i_0x7f);
  mm = vshlq_n_s32(mm, 23);
  Packet4f pow2n = vreinterpretq_f32_s32(mm);

  y = vmulq_f32(y, pow2n);
  return y;
}

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f plog<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
  const Packet4f p4f_minus_inf = vreinterpretq_f32_s32(pset1<Packet4i>(0xff800000));

  _EIGEN_DECLARE_CONST_Packet4i(inv_mant_mask, ~0x7f800000);

  /* natural logarithm computed for 4 simultaneous float
    return NaN for x <= 0
  */
  _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);

  x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
  Packet4f iszero_mask  = vreinterpretq_f32_u32(vceqq_f32(_x, vdupq_n_f32(0)));
  Packet4f invalid_mask = vreinterpretq_f32_u32(vmvnq_u32(vcgeq_f32(_x, vdupq_n_f32(0))));

  Packet4i ux = vreinterpretq_s32_f32(x);

  Packet4i emm0 = vshrq_n_s32(ux, 23);

  /* keep only the fractional part */
  ux = vandq_s32(ux, p4i_inv_mant_mask);
  ux = vorrq_s32(ux, vreinterpretq_s32_f32(p4f_half));
  x = vreinterpretq_f32_s32(ux);

  emm0 = vsubq_s32(emm0, p4i_0x7f);
  Packet4f e = vcvtq_f32_s32(emm0);

  e = vaddq_f32(e, p4f_1);

  /* part2:
     if( x < SQRTHF ) {
       e -= 1;
       x = x + x - 1.0;
     } else { x = x - 1.0; }
  */
  Packet4ui mask = vcltq_f32(x, p4f_cephes_SQRTHF);
  Packet4f tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
  x = vsubq_f32(x, p4f_1);
  e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(p4f_1), mask)));
  x = vaddq_f32(x, tmp);

  Packet4f z = vmulq_f32(x,x);

  Packet4f y = p4f_cephes_log_p0;
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p1);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p2);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p3);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p4);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p5);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p6);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p7);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, p4f_cephes_log_p8);
  y = vmulq_f32(y, x);

  y = vmulq_f32(y, z);

  tmp = vmulq_f32(e, p4f_cephes_log_q1);
  y = vaddq_f32(y, tmp);


  tmp = vmulq_f32(z, p4f_half);
  y = vsubq_f32(y, tmp);

  tmp = vmulq_f32(e, p4f_cephes_log_q2);
  x = vaddq_f32(x, y);
  x = vaddq_f32(x, tmp);
  x = por(x, invalid_mask);
  x = por(pandnot(x,iszero_mask), pand(iszero_mask, p4f_minus_inf)); 
  return x;
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATH_FUNCTIONS_NEON_H