aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/NEON/Complex.h
blob: d1943ba3bf943fa0fd693f5b1b31d2da5cd86b5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COMPLEX_NEON_H
#define EIGEN_COMPLEX_NEON_H

namespace internal {

static uint32x4_t p4ui_CONJ_XOR = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static uint32x2_t p2ui_CONJ_XOR = { 0x00000000, 0x80000000 };

//---------- float ----------
struct Packet2cf
{
  EIGEN_STRONG_INLINE Packet2cf() {}
  EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
  Packet4f  v;
};

template<> struct packet_traits<std::complex<float> >  : default_packet_traits
{
  typedef Packet2cf type;
  enum {
    Vectorizable = 1,
    size = 2,

    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasSetLinear = 0
  };
};

template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };

template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
{
  float32x2_t r64;
  r64 = vld1_f32((float *)&from);

  return Packet2cf(vcombine_f32(r64, r64));
}

template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v), p4ui_CONJ_XOR)));
}

template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  Packet4f v1, v2;
  float32x2_t a_lo, a_hi;

  // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
  v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
  // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
  v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
  // Multiply the real a with b
  v1 = vmulq_f32(v1, b.v);
  // Multiply the imag a with b
  v2 = vmulq_f32(v2, b.v);
  // Conjugate v2 
  v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
  // Swap real/imag elements in v2.
  a_lo = vrev64_f32(vget_low_f32(v2));
  a_hi = vrev64_f32(vget_high_f32(v2));
  v2 = vcombine_f32(a_lo, a_hi);
  // Add and return the result
  return Packet2cf(vaddq_f32(v1, v2));
}

template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}

template<> EIGEN_STRONG_INLINE Packet2cf pload <std::complex<float> >(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<std::complex<float> >(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); }

template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }

template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *   addr) { __pld((float *)addr); }

template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
{
  std::complex<float> EIGEN_ALIGN16 x[2];
  vst1q_f32((float *)x, a.v);
  return x[0];
}

template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
  float32x2_t a_lo, a_hi;
  Packet4f a_r128;

  a_lo = vget_low_f32(a.v);
  a_hi = vget_high_f32(a.v);
  a_r128 = vcombine_f32(a_hi, a_lo);

  return Packet2cf(a_r128);
}

EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
{
  return Packet2cf(vrev64q_f32(a.v));
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
  float32x2_t a1, a2;
  std::complex<float> s;

  a1 = vget_low_f32(a.v);
  a2 = vget_high_f32(a.v);
  a2 = vadd_f32(a1, a2);
  vst1_f32((float *)&s, a2);

  return s;
}

template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
  Packet4f sum1, sum2, sum;

  // Add the first two 64-bit float32x2_t of vecs[0]
  sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
  sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
  sum = vaddq_f32(sum1, sum2);

  return Packet2cf(sum);
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
  float32x2_t a1, a2, v1, v2, prod;
  std::complex<float> s;

  a1 = vget_low_f32(a.v);
  a2 = vget_high_f32(a.v);
   // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
  v1 = vdup_lane_f32(a1, 0);
  // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
  v2 = vdup_lane_f32(a1, 1);
  // Multiply the real a with b
  v1 = vmul_f32(v1, a2);
  // Multiply the imag a with b
  v2 = vmul_f32(v2, a2);
  // Conjugate v2 
  v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
  // Swap real/imag elements in v2.
  v2 = vrev64_f32(v2);
  // Add v1, v2
  prod = vadd_f32(v1, v2);

  vst1_f32((float *)&s, prod);

  return s;
}

template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
  EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
  {
    if (Offset==1)
    {
      first.v = vextq_f32(first.v, second.v, 2);
    }
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return pmul(a, pconj(b));
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return pmul(pconj(a), b);
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return pconj(pmul(a, b));
  }
};

template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  // TODO optimize it for AltiVec
  Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
  Packet4f s, rev_s;
  float32x2_t a_lo, a_hi;

  // this computes the norm
  s = vmulq_f32(b.v, b.v);
  a_lo = vrev64_f32(vget_low_f32(s));
  a_hi = vrev64_f32(vget_high_f32(s));
  rev_s = vcombine_f32(a_lo, a_hi);

  return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
}

} // end namespace internal

#endif // EIGEN_COMPLEX_NEON_H