aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/MSA/MathFunctions.h
blob: f5181b90ec5537e44acf94d32d7fca805599d1bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Copyright (C) 2018 Wave Computing, Inc.
// Written by:
//   Chris Larsen
//   Alexey Frunze (afrunze@wavecomp.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The sin, cos, exp, and log functions of this file come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

/* The tanh function of this file is an adaptation of
 * template<typename T> T generic_fast_tanh_float(const T&)
 * from MathFunctionsImpl.h.
 */

#ifndef EIGEN_MATH_FUNCTIONS_MSA_H
#define EIGEN_MATH_FUNCTIONS_MSA_H

namespace Eigen {

namespace internal {

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
plog<Packet4f>(const Packet4f& _x) {
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
  static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);

  // Convert negative argument into NAN (quiet negative, to be specific).
  Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0);
  Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero);
  Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero);
  Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask);  // Add 0.0 or NAN.
  Packet4f x = non_neg_x_or_nan;

  // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0.
  // N.B. the exponent is one less of what frexpf() would return.
  Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x));
  // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf().
  x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0));

  /*
     if (x < SQRTHF) {
       x = x + x - 1.0;
     } else {
       e += 1;
       x = x - 1.0;
     }
  */
  Packet4f xx = padd(x, x);
  Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x);
  e_int = psub(e_int, ge_mask);
  x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x);
  x = psub(x, p4f_1);
  Packet4f e = __builtin_msa_ffint_s_w(e_int);

  Packet4f x2 = pmul(x, x);
  Packet4f x3 = pmul(x2, x);

  Packet4f y, y1, y2;
  y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
  y = pmadd(y, x, p4f_cephes_log_p2);
  y1 = pmadd(y1, x, p4f_cephes_log_p5);
  y2 = pmadd(y2, x, p4f_cephes_log_p8);
  y = pmadd(y, x3, y1);
  y = pmadd(y, x3, y2);
  y = pmul(y, x3);

  y = pmadd(e, p4f_cephes_log_q1, y);
  x = __builtin_msa_fmsub_w(x, x2, p4f_half);
  x = padd(x, y);
  x = pmadd(e, p4f_cephes_log_q2, x);

  // x is now the logarithm result candidate. We still need to handle the
  // extreme arguments of zero and positive infinity, though.
  // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms
  // contain infinities of both signs (see the coefficients and code above).
  // INFINITY - INFINITY is NAN.

  // If the argument is +INFINITY, make it the new result candidate.
  // To achieve that we choose the smaller of the result candidate and the
  // argument.
  // This is correct for all finite pairs of values (the logarithm is smaller
  // than the argument).
  // This is also correct in the special case when the argument is +INFINITY
  // and the result candidate is NAN. This is because the fmin.df instruction
  // prefers non-NANs to NANs.
  x = __builtin_msa_fmin_w(x, non_neg_x_or_nan);

  // If the argument is zero (including -0.0), the result becomes -INFINITY.
  Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23);
  x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs);

  return x;
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
pexp<Packet4f>(const Packet4f& _x) {
  // Limiting single-precision pexp's argument to [-128, +128] lets pexp
  // reach 0 and INFINITY naturally.
  static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f);
  static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);

  Packet4f x = _x;

  // Clamp x.
  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x,
                                     (v16u8)p4f_exp_lo);
  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x,
                                     (v16u8)p4f_exp_hi);

  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
  Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0);
  Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add);
  Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2);
  Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int);

  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1);
  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2);

  Packet4f z = pmul(x, x);

  Packet4f y = p4f_cephes_exp_p0;
  y = pmadd(y, x, p4f_cephes_exp_p1);
  y = pmadd(y, x, p4f_cephes_exp_p2);
  y = pmadd(y, x, p4f_cephes_exp_p3);
  y = pmadd(y, x, p4f_cephes_exp_p4);
  y = pmadd(y, x, p4f_cephes_exp_p5);
  y = pmadd(y, z, x);
  y = padd(y, p4f_1);

  // y *= 2**exponent.
  y = __builtin_msa_fexp2_w(y, x2_int);

  return y;
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
ptanh<Packet4f>(const Packet4f& _x) {
  static _EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f);
  // The monomial coefficients of the numerator polynomial (odd).
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f);
  static _EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f);
  // The monomial coefficients of the denominator polynomial (even).
  static _EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f);

  Packet4f x = pabs(_x);
  Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny);

  // Clamp the inputs to the range [-9, 9] since anything outside
  // this range is -/+1.0f in single-precision.
  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x,
                                     (v16u8)p4f_tanh_hi);

  // Since the polynomials are odd/even, we need x**2.
  Packet4f x2 = pmul(x, x);

  // Evaluate the numerator polynomial p.
  Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11);
  p = pmadd(x2, p, p4f_alpha_9);
  p = pmadd(x2, p, p4f_alpha_7);
  p = pmadd(x2, p, p4f_alpha_5);
  p = pmadd(x2, p, p4f_alpha_3);
  p = pmadd(x2, p, p4f_alpha_1);
  p = pmul(x, p);

  // Evaluate the denominator polynomial q.
  Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4);
  q = pmadd(x2, q, p4f_beta_2);
  q = pmadd(x2, q, p4f_beta_0);

  // Divide the numerator by the denominator.
  p = pdiv(p, q);

  // Reinstate the sign.
  p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0);

  // When the argument is very small in magnitude it's more accurate to just return it.
  p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x);

  return p;
}

template <bool sine>
Packet4f psincos_inner_msa_float(const Packet4f& _x) {
  static _EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f);  // Approx. (2**24) / (4/Pi).
  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f);
  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f);
  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f);
  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f);
  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f);
  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f);
  static _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f);  // 4/Pi.
  static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);

  Packet4f x = pabs(_x);

  // Translate infinite arguments into NANs.
  Packet4f zero_or_nan_if_inf = psub(_x, _x);
  x = padd(x, zero_or_nan_if_inf);
  // Prevent sin/cos from generating values larger than 1.0 in magnitude
  // for very large arguments by setting x to 0.0.
  Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg);
  x = pand(x, (Packet4f)small_or_nan_mask);

  // Scale x by 4/Pi to find x's octant.
  Packet4f y = pmul(x, p4f_cephes_FOPI);
  // Get the octant. We'll reduce x by this number of octants or by one more than it.
  Packet4i y_int = __builtin_msa_ftrunc_s_w(y);
  // x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
  // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
  // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
  Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1);
  Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear
  y = __builtin_msa_ffint_s_w(y_int2);

  // Compute the sign to apply to the polynomial.
  Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x)
                            : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29);

  // Get the polynomial selection mask.
  // We'll calculate both (sin and cos) polynomials and then select from the two.
  Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0);

  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
  // The magic pass: "Extended precision modular arithmetic"
  // x = ((x - y * DP1) - y * DP2) - y * DP3
  Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1);
  Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2);
  Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3);
  x = padd(x, tmp1);
  x = padd(x, tmp2);
  x = padd(x, tmp3);

  // Evaluate the cos(x) polynomial.
  y = p4f_coscof_p0;
  Packet4f z = pmul(x, x);
  y = pmadd(y, z, p4f_coscof_p1);
  y = pmadd(y, z, p4f_coscof_p2);
  y = pmul(y, z);
  y = pmul(y, z);
  y = __builtin_msa_fmsub_w(y, z, p4f_half);
  y = padd(y, p4f_1);

  // Evaluate the sin(x) polynomial.
  Packet4f y2 = p4f_sincof_p0;
  y2 = pmadd(y2, z, p4f_sincof_p1);
  y2 = pmadd(y2, z, p4f_sincof_p2);
  y2 = pmul(y2, z);
  y2 = pmadd(y2, x, x);

  // Select the correct result from the two polynomials.
  y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2)
           : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y);

  // Update the sign.
  sign_mask = pxor(sign_mask, (Packet4i)y);
  y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left
  return y;
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
psin<Packet4f>(const Packet4f& x) {
  return psincos_inner_msa_float</* sine */ true>(x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
pcos<Packet4f>(const Packet4f& x) {
  return psincos_inner_msa_float</* sine */ false>(x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d
pexp<Packet2d>(const Packet2d& _x) {
  // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp
  // reach 0 and INFINITY naturally.
  static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0);
  static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
  static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
  static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0);
  static _EIGEN_DECLARE_CONST_Packet2d(2, 2.0);

  Packet2d x = _x;

  // Clamp x.
  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x,
                                     (v16u8)p2d_exp_lo);
  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x,
                                     (v16u8)p2d_exp_hi);

  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
  Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0);
  Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add);
  Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2);
  Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long);

  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1);
  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2);

  x2 = pmul(x, x);

  Packet2d px = p2d_cephes_exp_p0;
  px = pmadd(px, x2, p2d_cephes_exp_p1);
  px = pmadd(px, x2, p2d_cephes_exp_p2);
  px = pmul(px, x);

  Packet2d qx = p2d_cephes_exp_q0;
  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
  qx = pmadd(qx, x2, p2d_cephes_exp_q3);

  x = pdiv(px, psub(qx, px));
  x = pmadd(p2d_2, x, p2d_1);

  // x *= 2**exponent.
  x = __builtin_msa_fexp2_d(x, x2_long);

  return x;
}

}  // end namespace internal

}  // end namespace Eigen

#endif  // EIGEN_MATH_FUNCTIONS_MSA_H