aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
blob: 9a1feb0d9acbf32b5e3e5cce2fdbc22aa98b70f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The exp and log functions of this file initially come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

#ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
#define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H

namespace Eigen {
namespace internal {

template<typename Packet, int N> EIGEN_DEVICE_FUNC inline Packet
pset(const typename unpacket_traits<Packet>::type (&a)[N] /* a */) {
  EIGEN_STATIC_ASSERT(unpacket_traits<Packet>::size == N, THE_ARRAY_SIZE_SHOULD_EQUAL_WITH_PACKET_SIZE);
  return pload<Packet>(a);
}

template<typename Packet> EIGEN_STRONG_INLINE Packet
pfrexp_float(const Packet& a, Packet& exponent) {
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  const Packet cst_126f = pset1<Packet>(126.0f);
  const Packet cst_half = pset1<Packet>(0.5f);
  const Packet cst_inv_mant_mask  = pset1frombits<Packet>(~0x7f800000u);
  exponent = psub(pcast<PacketI,Packet>(plogical_shift_right<23>(preinterpret<PacketI>(a))), cst_126f);
  return por(pand(a, cst_inv_mant_mask), cst_half);
}

template<typename Packet> EIGEN_STRONG_INLINE Packet
pfrexp_double(const Packet& a, Packet& exponent) {
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  const Packet cst_1022d = pset1<Packet>(1022.0);
  const Packet cst_half = pset1<Packet>(0.5);
  const Packet cst_inv_mant_mask  = pset1frombits<Packet>(static_cast<uint64_t>(~0x7ff0000000000000ull));
  exponent = psub(pcast<PacketI,Packet>(plogical_shift_right<52>(preinterpret<PacketI>(a))), cst_1022d);
  return por(pand(a, cst_inv_mant_mask), cst_half);
}

template<typename Packet> EIGEN_STRONG_INLINE Packet
pldexp_float(Packet a, Packet exponent)
{
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  const Packet cst_127 = pset1<Packet>(127.f);
  // return a * 2^exponent
  PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_127));
  return pmul(a, preinterpret<Packet>(plogical_shift_left<23>(ei)));
}

template<typename Packet> EIGEN_STRONG_INLINE Packet
pldexp_double(Packet a, Packet exponent)
{
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  const Packet cst_1023 = pset1<Packet>(1023.0);
  // return a * 2^exponent
  PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_1023));
  return pmul(a, preinterpret<Packet>(plogical_shift_left<52>(ei)));
}

// Natural or base 2 logarithm.
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
// be easily approximated by a polynomial centered on m=1 for stability.
// TODO(gonnet): Further reduce the interval allowing for lower-degree
//               polynomial interpolants -> ... -> profit!
template <typename Packet, bool base2>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_impl_float(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1              = pset1<Packet>(1.0f);
  const Packet cst_neg_half       = pset1<Packet>(-0.5f);
  // The smallest non denormalized float number.
  const Packet cst_min_norm_pos   = pset1frombits<Packet>( 0x00800000u);
  const Packet cst_minus_inf      = pset1frombits<Packet>( 0xff800000u);
  const Packet cst_pos_inf        = pset1frombits<Packet>( 0x7f800000u);

  // Polynomial coefficients.
  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
  const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
  const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
  const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
  const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
  const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
  const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
  const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
  const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
  const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);

  // Truncate input values to the minimum positive normal.
  x = pmax(x, cst_min_norm_pos);

  Packet e;
  // extract significant in the range [0.5,1) and exponent
  x = pfrexp(x,e);

  // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
  // and shift by -1. The values are then centered around 0, which improves
  // the stability of the polynomial evaluation.
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
  Packet tmp = pand(x, mask);
  x = psub(x, cst_1);
  e = psub(e, pand(cst_1, mask));
  x = padd(x, tmp);

  Packet x2 = pmul(x, x);
  Packet x3 = pmul(x2, x);

  // Evaluate the polynomial approximant of degree 8 in three parts, probably
  // to improve instruction-level parallelism.
  Packet y, y1, y2;
  y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
  y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
  y  = pmadd(y, x, cst_cephes_log_p2);
  y1 = pmadd(y1, x, cst_cephes_log_p5);
  y2 = pmadd(y2, x, cst_cephes_log_p8);
  y  = pmadd(y, x3, y1);
  y  = pmadd(y, x3, y2);
  y  = pmul(y, x3);

  y = pmadd(cst_neg_half, x2, y);
  x = padd(x, y);

  // Add the logarithm of the exponent back to the result of the interpolation.
  if (base2) {
    const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
    x = pmadd(x, cst_log2e, e);
  } else {
    const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
    x = pmadd(e, cst_ln2, x);
  }

  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
  Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
  // Filter out invalid inputs, i.e.:
  //  - negative arg will be NAN
  //  - 0 will be -INF
  //  - +INF will be +INF
  return pselect(iszero_mask, cst_minus_inf,
                              por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_float(const Packet _x)
{
  return plog_impl_float<Packet, /* base2 */ false>(_x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog2_float(const Packet _x)
{
  return plog_impl_float<Packet, /* base2 */ true>(_x);
}

/* Returns the base e (2.718...) or base 2 logarithm of x.
 * The argument is separated into its exponent and fractional parts.
 * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
 * is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * for more detail see: http://www.netlib.org/cephes/
 */
template <typename Packet, bool base2>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_impl_double(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1              = pset1<Packet>(1.0);
  const Packet cst_neg_half       = pset1<Packet>(-0.5);
  // The smallest non denormalized double.
  const Packet cst_min_norm_pos   = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
  const Packet cst_minus_inf      = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
  const Packet cst_pos_inf        = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));


 // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 //                             1/sqrt(2) <= x < sqrt(2)
  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
  const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
  const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
  const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
  const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
  const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
  const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);

  const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
  const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
  const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
  const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
  const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
  const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);

  // Truncate input values to the minimum positive normal.
  x = pmax(x, cst_min_norm_pos);

  Packet e;
  // extract significant in the range [0.5,1) and exponent
  x = pfrexp(x,e);
  
  // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
  // and shift by -1. The values are then centered around 0, which improves
  // the stability of the polynomial evaluation.
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
  Packet tmp = pand(x, mask);
  x = psub(x, cst_1);
  e = psub(e, pand(cst_1, mask));
  x = padd(x, tmp);

  Packet x2 = pmul(x, x);
  Packet x3 = pmul(x2, x);

  // Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
  // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
  Packet y, y1, y_;
  y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
  y  = pmadd(y, x, cst_cephes_log_p2);
  y1 = pmadd(y1, x, cst_cephes_log_p5);
  y_ = pmadd(y, x3, y1);

  y  = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
  y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
  y  = pmadd(y, x, cst_cephes_log_q2);
  y1 = pmadd(y1, x, cst_cephes_log_q5);
  y  = pmadd(y, x3, y1);

  y_ = pmul(y_, x3);
  y  = pdiv(y_, y);

  y = pmadd(cst_neg_half, x2, y);
  x = padd(x, y);

  // Add the logarithm of the exponent back to the result of the interpolation.
  if (base2) {
    const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
    x = pmadd(x, cst_log2e, e);
  } else {
    const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
    x = pmadd(e, cst_ln2, x);
  }

  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
  Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
  // Filter out invalid inputs, i.e.:
  //  - negative arg will be NAN
  //  - 0 will be -INF
  //  - +INF will be +INF
  return pselect(iszero_mask, cst_minus_inf,
                              por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_double(const Packet _x)
{
  return plog_impl_double<Packet, /* base2 */ false>(_x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog2_double(const Packet _x)
{
  return plog_impl_double<Packet, /* base2 */ true>(_x);
}

/** \internal \returns log(1 + x) computed using W. Kahan's formula.
    See: http://www.plunk.org/~hatch/rightway.php
 */
template<typename Packet>
Packet generic_plog1p(const Packet& x)
{
  typedef typename unpacket_traits<Packet>::type ScalarType;
  const Packet one = pset1<Packet>(ScalarType(1));
  Packet xp1 = padd(x, one);
  Packet small_mask = pcmp_eq(xp1, one);
  Packet log1 = plog(xp1);
  Packet inf_mask = pcmp_eq(xp1, log1);
  Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
  return pselect(por(small_mask, inf_mask), x, log_large);
}

/** \internal \returns exp(x)-1 computed using W. Kahan's formula.
    See: http://www.plunk.org/~hatch/rightway.php
 */
template<typename Packet>
Packet generic_expm1(const Packet& x)
{
  typedef typename unpacket_traits<Packet>::type ScalarType;
  const Packet one = pset1<Packet>(ScalarType(1));
  const Packet neg_one = pset1<Packet>(ScalarType(-1));
  Packet u = pexp(x);
  Packet one_mask = pcmp_eq(u, one);
  Packet u_minus_one = psub(u, one);
  Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
  Packet logu = plog(u);
  // The following comparison is to catch the case where
  // exp(x) = +inf. It is written in this way to avoid having
  // to form the constant +inf, which depends on the packet
  // type.
  Packet pos_inf_mask = pcmp_eq(logu, u);
  Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
  expm1 = pselect(pos_inf_mask, u, expm1);
  return pselect(one_mask,
                 x,
                 pselect(neg_one_mask,
                         neg_one,
                         expm1));
}


// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_float(const Packet _x)
{
  const Packet cst_1      = pset1<Packet>(1.0f);
  const Packet cst_half   = pset1<Packet>(0.5f);
  const Packet cst_exp_hi = pset1<Packet>( 88.3762626647950f);
  const Packet cst_exp_lo = pset1<Packet>(-88.3762626647949f);

  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
  const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
  const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
  const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
  const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
  const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);

  // Clamp x.
  Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);

  // Express exp(x) as exp(m*ln(2) + r), start by extracting
  // m = floor(x/ln(2) + 0.5).
  Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));

  // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
  // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
  // truncation errors.
  Packet r;
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
  const Packet cst_nln2 = pset1<Packet>(-0.6931471805599453f);
  r = pmadd(m, cst_nln2, x);
#else
  const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693359375f);
  const Packet cst_cephes_exp_C2 = pset1<Packet>(-2.12194440e-4f);
  r = psub(x, pmul(m, cst_cephes_exp_C1));
  r = psub(r, pmul(m, cst_cephes_exp_C2));
#endif

  Packet r2 = pmul(r, r);
  Packet r3 = pmul(r2, r);

  // Evaluate the polynomial approximant,improved by instruction-level parallelism.
  Packet y, y1, y2;
  y  = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
  y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
  y2 = padd(r, cst_1);
  y  = pmadd(y, r, cst_cephes_exp_p2);
  y1 = pmadd(y1, r, cst_cephes_exp_p5);
  y  = pmadd(y, r3, y1);
  y  = pmadd(y, r2, y2);
  
  // Return 2^m * exp(r).
  return pmax(pldexp(y,m), _x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_double(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1 = pset1<Packet>(1.0);
  const Packet cst_2 = pset1<Packet>(2.0);
  const Packet cst_half = pset1<Packet>(0.5);

  const Packet cst_exp_hi = pset1<Packet>(709.437);
  const Packet cst_exp_lo = pset1<Packet>(-709.436139303);

  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
  const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
  const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
  const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
  const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
  const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
  const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
  const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
  const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);

  Packet tmp, fx;

  // clamp x
  x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
  // Express exp(x) as exp(g + n*log(2)).
  fx = pmadd(cst_cephes_LOG2EF, x, cst_half);

  // Get the integer modulus of log(2), i.e. the "n" described above.
  fx = pfloor(fx);

  // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
  // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
  // digits right.
  tmp = pmul(fx, cst_cephes_exp_C1);
  Packet z = pmul(fx, cst_cephes_exp_C2);
  x = psub(x, tmp);
  x = psub(x, z);

  Packet x2 = pmul(x, x);

  // Evaluate the numerator polynomial of the rational interpolant.
  Packet px = cst_cephes_exp_p0;
  px = pmadd(px, x2, cst_cephes_exp_p1);
  px = pmadd(px, x2, cst_cephes_exp_p2);
  px = pmul(px, x);

  // Evaluate the denominator polynomial of the rational interpolant.
  Packet qx = cst_cephes_exp_q0;
  qx = pmadd(qx, x2, cst_cephes_exp_q1);
  qx = pmadd(qx, x2, cst_cephes_exp_q2);
  qx = pmadd(qx, x2, cst_cephes_exp_q3);

  // I don't really get this bit, copied from the SSE2 routines, so...
  // TODO(gonnet): Figure out what is going on here, perhaps find a better
  // rational interpolant?
  x = pdiv(px, psub(qx, px));
  x = pmadd(cst_2, x, cst_1);

  // Construct the result 2^n * exp(g) = e * x. The max is used to catch
  // non-finite values in the input.
  return pmax(pldexp(x,fx), _x);
}

// The following code is inspired by the following stack-overflow answer:
//   https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
// It has been largely optimized:
//  - By-pass calls to frexp.
//  - Aligned loads of required 96 bits of 2/pi. This is accomplished by
//    (1) balancing the mantissa and exponent to the required bits of 2/pi are
//    aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
//  - Avoid a branch in rounding and extraction of the remaining fractional part.
// Overall, I measured a speed up higher than x2 on x86-64.
inline float trig_reduce_huge (float xf, int *quadrant)
{
  using Eigen::numext::int32_t;
  using Eigen::numext::uint32_t;
  using Eigen::numext::int64_t;
  using Eigen::numext::uint64_t;

  const double pio2_62 = 3.4061215800865545e-19;    // pi/2 * 2^-62
  const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt

  // 192 bits of 2/pi for Payne-Hanek reduction
  // Bits are introduced by packet of 8 to enable aligned reads.
  static const uint32_t two_over_pi [] = 
  {
    0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
    0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
    0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
    0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
    0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
    0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
    0x10e41000, 0xe4100000
  };
  
  uint32_t xi = numext::bit_cast<uint32_t>(xf);
  // Below, -118 = -126 + 8.
  //   -126 is to get the exponent,
  //   +8 is to enable alignment of 2/pi's bits on 8 bits.
  // This is possible because the fractional part of x as only 24 meaningful bits.
  uint32_t e = (xi >> 23) - 118;
  // Extract the mantissa and shift it to align it wrt the exponent
  xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);

  uint32_t i = e >> 3;
  uint32_t twoopi_1  = two_over_pi[i-1];
  uint32_t twoopi_2  = two_over_pi[i+3];
  uint32_t twoopi_3  = two_over_pi[i+7];

  // Compute x * 2/pi in 2.62-bit fixed-point format.
  uint64_t p;
  p = uint64_t(xi) * twoopi_3;
  p = uint64_t(xi) * twoopi_2 + (p >> 32);
  p = (uint64_t(xi * twoopi_1) << 32) + p;

  // Round to nearest: add 0.5 and extract integral part.
  uint64_t q = (p + zero_dot_five) >> 62;
  *quadrant = int(q);
  // Now it remains to compute "r = x - q*pi/2" with high accuracy,
  // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
  //   r = (p-q)*pi/2,
  // where the product can be be carried out with sufficient accuracy using double precision.
  p -= q<<62;
  return float(double(int64_t(p)) * pio2_62);
}

template<bool ComputeSine,typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
#if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
__attribute__((optimize("-fno-unsafe-math-optimizations")))
#endif
Packet psincos_float(const Packet& _x)
{
// Workaround -ffast-math aggressive optimizations
// See bug 1674
#if EIGEN_COMP_CLANG && defined(EIGEN_VECTORIZE_SSE)
#define EIGEN_SINCOS_DONT_OPT(X) __asm__  ("" : "+x" (X));
#else
#define EIGEN_SINCOS_DONT_OPT(X)
#endif

  typedef typename unpacket_traits<Packet>::integer_packet PacketI;

  const Packet  cst_2oPI            = pset1<Packet>(0.636619746685028076171875f); // 2/PI
  const Packet  cst_rounding_magic  = pset1<Packet>(12582912); // 2^23 for rounding
  const PacketI csti_1              = pset1<PacketI>(1);
  const Packet  cst_sign_mask       = pset1frombits<Packet>(0x80000000u);

  Packet x = pabs(_x);

  // Scale x by 2/Pi to find x's octant.
  Packet y = pmul(x, cst_2oPI);

  // Rounding trick:
  Packet y_round = padd(y, cst_rounding_magic);
  EIGEN_SINCOS_DONT_OPT(y_round)
  PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
  y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi

  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
  // using "Extended precision modular arithmetic"
  #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
  // This version requires true FMA for high accuracy
  // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
  const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
  x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
  x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
  x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
  #else
  // Without true FMA, the previous set of coefficients maintain 1ULP accuracy
  // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
  // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.

  // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
  // and 2 ULP up to:
  const float huge_th = ComputeSine ? 25966.f : 18838.f;
  x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
  EIGEN_SINCOS_DONT_OPT(x)
  x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
  EIGEN_SINCOS_DONT_OPT(x)
  x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
  x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee

  // For the record, the following set of coefficients maintain 2ULP up
  // to a slightly larger range:
  // const float huge_th = ComputeSine ? 51981.f : 39086.125f;
  // but it slightly fails to maintain 1ULP for two values of sin below pi.
  // x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
  // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
  // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
  // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);

  // For the record, with only 3 iterations it is possible to maintain
  // 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
  // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
  #endif

  if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
  {
    const int PacketSize = unpacket_traits<Packet>::size;
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
    pstoreu(vals, pabs(_x));
    pstoreu(x_cpy, x);
    pstoreu(y_int2, y_int);
    for(int k=0; k<PacketSize;++k)
    {
      float val = vals[k];
      if(val>=huge_th && (numext::isfinite)(val))
        x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
    }
    x = ploadu<Packet>(x_cpy);
    y_int = ploadu<PacketI>(y_int2);
  }

  // Compute the sign to apply to the polynomial.
  // sin: sign = second_bit(y_int) xor signbit(_x)
  // cos: sign = second_bit(y_int+1)
  Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
                                : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
  sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit

  // Get the polynomial selection mask from the second bit of y_int
  // We'll calculate both (sin and cos) polynomials and then select from the two.
  Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));

  Packet x2 = pmul(x,x);

  // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
  Packet y1 =        pset1<Packet>(2.4372266125283204019069671630859375e-05f);
  y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f     ));
  y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f           ));
  y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
  y1 = pmadd(y1, x2, pset1<Packet>(1.f));

  // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
  // octave/matlab code to compute those coefficients:
  //    x = (0:0.0001:pi/4)';
  //    A = [x.^3 x.^5 x.^7];
  //    w = ((1.-(x/(pi/4)).^2).^5)*2000+1;         # weights trading relative accuracy
  //    c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
  //    printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
  //
  Packet y2 =        pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
  y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
  y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
  y2 = pmul(y2, x2);
  y2 = pmadd(y2, x, x);

  // Select the correct result from the two polynomials.
  y = ComputeSine ? pselect(poly_mask,y2,y1)
                  : pselect(poly_mask,y1,y2);

  // Update the sign and filter huge inputs
  return pxor(y, sign_bit);

#undef EIGEN_SINCOS_DONT_OPT
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psin_float(const Packet& x)
{
  return psincos_float<true>(x);
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pcos_float(const Packet& x)
{
  return psincos_float<false>(x);
}


template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psqrt_complex(const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename Scalar::value_type RealScalar;
  typedef typename unpacket_traits<Packet>::as_real RealPacket;

  // Computes the principal sqrt of the complex numbers in the input.
  //
  // For example, for packets containing 2 complex numbers stored in interleaved format
  //    a = [a0, a1] = [x0, y0, x1, y1],
  // where x0 = real(a0), y0 = imag(a0) etc., this function returns
  //    b = [b0, b1] = [u0, v0, u1, v1],
  // such that b0^2 = a0, b1^2 = a1.
  //
  // To derive the formula for the complex square roots, let's consider the equation for
  // a single complex square root of the number x + i*y. We want to find real numbers
  // u and v such that
  //    (u + i*v)^2 = x + i*y  <=>
  //    u^2 - v^2 + i*2*u*v = x + i*v.
  // By equating the real and imaginary parts we get:
  //    u^2 - v^2 = x
  //    2*u*v = y.
  //
  // For x >= 0, this has the numerically stable solution
  //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
  //    v = 0.5 * (y / u)
  // and for x < 0,
  //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
  //    u = 0.5 * (y / v)
  //
  //  To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
  //     l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,

  // In the following, without lack of generality, we have annotated the code, assuming
  // that the input is a packet of 2 complex numbers.
  //
  // Step 1. Compute l = [l0, l0, l1, l1], where
  //    l0 = sqrt(x0^2 + y0^2),  l1 = sqrt(x1^2 + y1^2)
  // To avoid over- and underflow, we use the stable formula for each hypotenuse
  //    l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
  // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.

  Packet a_flip = pcplxflip(a);
  RealPacket a_abs = pabs(a.v);           // [|x0|, |y0|, |x1|, |y1|]
  RealPacket a_abs_flip = pabs(a_flip.v); // [|y0|, |x0|, |y1|, |x1|]
  RealPacket a_max = pmax(a_abs, a_abs_flip);
  RealPacket a_min = pmin(a_abs, a_abs_flip);
  RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
  RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
  RealPacket r = pdiv(a_min, a_max);
  const RealPacket cst_one  = pset1<RealPacket>(RealScalar(1));
  RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r))));  // [l0, l0, l1, l1]
  // Set l to a_max if a_min is zero.
  l = pselect(a_min_zero_mask, a_max, l);

  // Step 2. Compute [rho0, *, rho1, *], where
  // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 =  sqrt(0.5 * (l1 + |x1|))
  // We don't care about the imaginary parts computed here. They will be overwritten later.
  const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
  Packet rho;
  rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));

  // Step 3. Compute [rho0, eta0, rho1, eta1], where
  // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
  // set eta = 0 of input is 0 + i0.
  RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
  RealPacket real_mask = peven_mask(a.v);
  Packet positive_real_result;
  // Compute result for inputs with positive real part.
  positive_real_result.v = pselect(real_mask, rho.v, eta);

  // Step 4. Compute solution for inputs with negative real part:
  //         [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
  const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), RealScalar(-0.0))).v;
  RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
  Packet negative_real_result;
  // Notice that rho is positive, so taking it's absolute value is a noop.
  negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);

  // Step 5. Select solution branch based on the sign of the real parts.
  Packet negative_real_mask;
  negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
  negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
  Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);

  // Step 6. Handle special cases for infinities:
  // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
  // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
  // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
  // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
  const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
  Packet is_inf;
  is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
  Packet is_real_inf;
  is_real_inf.v = pand(is_inf.v, real_mask);
  is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
  // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
  Packet real_inf_result;
  real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
  real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
  // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
  Packet is_imag_inf;
  is_imag_inf.v = pandnot(is_inf.v, real_mask);
  is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
  Packet imag_inf_result;
  imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));

  return  pselect(is_imag_inf, imag_inf_result,
                  pselect(is_real_inf, real_inf_result,result));
}


// This function implements the Veltkamp splitting. Given a floating point
// number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
// exactly and that half of the significant of x fits in x_hi.
// This code corresponds to Algorithms 3 and 4 in
// https://hal.inria.fr/hal-01774587v2/document
template<typename Packet>
EIGEN_STRONG_INLINE
void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
  EIGEN_CONSTEXPR Scalar shift_scale = Scalar(uint64_t(1) << shift);
  Packet gamma = pmul(pset1<Packet>(shift_scale + 1), x);
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
  x_hi = pmadd(pset1<Packet>(-shift_scale), x, gamma);
#else
  Packet rho = psub(x, gamma);
  x_hi = padd(rho, gamma);
#endif
  x_lo = psub(x, x_hi);
}

// This function splits x into the nearest integer n and fractional part r,
// such that x = n + r holds exactly.
template<typename Packet>
EIGEN_STRONG_INLINE
void integer_split(const Packet& x, Packet& n, Packet& r) {
  n = pround(x);
  r = psub(x, n);
}

// This function implements Dekker's algorithm for two products {x * y1, x * y2} with
// a shared factor. Given floating point numbers {x, y1, y2} computes the pairs
// {p1, r1} and {p2, r2} such that x * y1 = p1 + r1 holds exactly and
// p1 = fl(x * y1), and x * y2 = p2 + r2 holds exactly and p2 = fl(x * y2).
template<typename Packet>
EIGEN_STRONG_INLINE
void double_dekker(const Packet& x, const Packet& y1, const Packet& y2,
                   Packet& p1, Packet& r1, Packet& p2, Packet& r2) {
  Packet x_hi, x_lo, y1_hi, y1_lo, y2_hi, y2_lo;
  veltkamp_splitting(x, x_hi, x_lo);
  veltkamp_splitting(y1, y1_hi, y1_lo);
  veltkamp_splitting(y2, y2_hi, y2_lo);

  p1 = pmul(x, y1);
  r1 = pmadd(x_hi, y1_hi, pnegate(p1));
  r1 = pmadd(x_hi, y1_lo, r1);
  r1 = pmadd(x_lo, y1_hi, r1);
  r1 = pmadd(x_lo, y1_lo, r1);

  p2 = pmul(x, y2);
  r2 = pmadd(x_hi, y2_hi, pnegate(p2));
  r2 = pmadd(x_hi, y2_lo, r2);
  r2 = pmadd(x_lo, y2_hi, r2);
  r2 = pmadd(x_lo, y2_lo, r2);
}

// This function implements the non-trivial case of pow(x,y) where x is
// positive and y is (possibly) non-integer.
// Formally, pow(x,y) = 2**(y * log2(x))
template<typename Packet>
EIGEN_STRONG_INLINE
Packet generic_pow_impl(const Packet& x, const Packet& y) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  // Split x into exponent e_x and mantissa m_x.
  Packet e_x;
  Packet m_x = pfrexp(x, e_x);

  // Adjust m_x to lie in [0.75:1.5) to minimize absolute error in log2(m_x).
  Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(Scalar(0.75)));
  m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
  e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);

  Packet r_x = plog2(m_x);

  // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
  // precision using Dekker's algorithm.
  Packet f1_hi, f1_lo, f2_hi, f2_lo;
  double_dekker(y, e_x, r_x, f1_hi, f1_lo, f2_hi, f2_lo);

  // Separate f into integer and fractional parts, keeping f1_hi, and f2_hi
  // separate to avoid cancellation.
  Packet n1, r1, n2, r2;
  integer_split(f1_hi, n1, r1);
  integer_split(f2_hi, n2, r2);

  // Add up integer parts and sum the remainders.
  Packet n_z = padd(n1, n2);
  // Notice: I experimented with using compensated (Kahan) summation here,
  // but it does not seem to matter.
  Packet rem = padd(padd(f1_lo, f2_lo), padd(r1, r2));

  // Extract any additional integer part that may have accumulated in rem.
  Packet nrem, r_z;
  integer_split(rem, nrem, r_z);
  n_z = padd(n_z, nrem);

  // We now have an accurate split of f = n_z + r_z and can compute
  // x^y = 2**{n_z + r_z) = exp(ln(2) * r_z) * 2**{n_z}.
  // The first factor we compute by calling pexp(), while multiplication
  // by an integer power of 2 can be done exactly using pldexp().
  // Note: I experimented with using Dekker's algorithms for the
  // multiplication by ln(2) here, but did not see any difference.
  Packet e_r = pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), r_z));
  return pldexp(e_r, n_z);
}

// Generic implementation of pow(x,y).
template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet generic_pow(const Packet& x, const Packet& y) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
  const Packet cst_zero = pset1<Packet>(Scalar(0));
  const Packet cst_one = pset1<Packet>(Scalar(1));
  const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());

  Packet abs_x = pabs(x);
  // Predicates for sign and magnitude of x.
  Packet x_is_zero = pcmp_eq(x, cst_zero);
  Packet x_is_neg = pcmp_lt(x, cst_zero);
  Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
  Packet abs_x_is_one =  pcmp_eq(abs_x, cst_one);
  Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
  Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
  Packet x_is_one =  pandnot(abs_x_is_one, x_is_neg);
  Packet x_is_neg_one =  pand(abs_x_is_one, x_is_neg);
  Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));

  // Predicates for sign and magnitude of y.
  Packet y_is_zero = pcmp_eq(y, cst_zero);
  Packet y_is_neg = pcmp_lt(y, cst_zero);
  Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
  Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
  Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);

  // Predicates for whether y is integer and/or even.
  Packet y_is_int = pcmp_eq(pfloor(y), y);
  Packet y_div_2 = pldexp(y, pset1<Packet>(Scalar(-1)));
  Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);

  // Predicates encoding special cases for the value of pow(x,y)
  Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf), y_is_int), abs_y_is_inf);
  Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
  Packet pow_is_one = por(por(y_is_zero, x_is_one), pand(x_is_neg_one, abs_y_is_inf));
  Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos), pand(abs_x_is_inf, y_is_neg)),
                               pand(pand(abs_x_is_lt_one, abs_y_is_inf), y_is_pos)),
                           pand(pand(abs_x_is_gt_one, abs_y_is_inf), y_is_neg));
  Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg), pand(abs_x_is_inf, y_is_pos)),
                              pand(pand(abs_x_is_lt_one, abs_y_is_inf), y_is_neg)),
                          pand(pand(abs_x_is_gt_one, abs_y_is_inf), y_is_pos));

  // General computation of pow(x,y) for positive x or negative x and integer y.
  Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
  Packet pow_abs = generic_pow_impl(abs_x, y);

  return pselect(pow_is_one, cst_one,
                 pselect(pow_is_nan, cst_nan,
                         pselect(pow_is_inf, cst_pos_inf,
                                 pselect(pow_is_zero, cst_zero,
                                         pselect(negate_pow_abs, pnegate(pow_abs), pow_abs)))));
}


/* polevl (modified for Eigen)
 *
 *      Evaluate polynomial
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * Scalar x, y, coef[N+1];
 *
 * y = polevl<decltype(x), N>( x, coef);
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates polynomial of degree N:
 *
 *                     2          N
 * y  =  C  + C x + C x  +...+ C x
 *        0    1     2          N
 *
 * Coefficients are stored in reverse order:
 *
 * coef[0] = C  , ..., coef[N] = C  .
 *            N                   0
 *
 *  The function p1evl() assumes that coef[N] = 1.0 and is
 * omitted from the array.  Its calling arguments are
 * otherwise the same as polevl().
 *
 *
 * The Eigen implementation is templatized.  For best speed, store
 * coef as a const array (constexpr), e.g.
 *
 * const double coef[] = {1.0, 2.0, 3.0, ...};
 *
 */
template <typename Packet, int N>
struct ppolevl {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
    EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
    return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
  }
};

template <typename Packet>
struct ppolevl<Packet, 0> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
    EIGEN_UNUSED_VARIABLE(x);
    return pset1<Packet>(coeff[0]);
  }
};

/* chbevl (modified for Eigen)
 *
 *     Evaluate Chebyshev series
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * Scalar x, y, coef[N], chebevl();
 *
 * y = chbevl( x, coef, N );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the series
 *
 *        N-1
 *         - '
 *  y  =   >   coef[i] T (x/2)
 *         -            i
 *        i=0
 *
 * of Chebyshev polynomials Ti at argument x/2.
 *
 * Coefficients are stored in reverse order, i.e. the zero
 * order term is last in the array.  Note N is the number of
 * coefficients, not the order.
 *
 * If coefficients are for the interval a to b, x must
 * have been transformed to x -> 2(2x - b - a)/(b-a) before
 * entering the routine.  This maps x from (a, b) to (-1, 1),
 * over which the Chebyshev polynomials are defined.
 *
 * If the coefficients are for the inverted interval, in
 * which (a, b) is mapped to (1/b, 1/a), the transformation
 * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
 * this becomes x -> 4a/x - 1.
 *
 *
 *
 * SPEED:
 *
 * Taking advantage of the recurrence properties of the
 * Chebyshev polynomials, the routine requires one more
 * addition per loop than evaluating a nested polynomial of
 * the same degree.
 *
 */

template <typename Packet, int N>
struct pchebevl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) {
    typedef typename unpacket_traits<Packet>::type Scalar;
    Packet b0 = pset1<Packet>(coef[0]);
    Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
    Packet b2;

    for (int i = 1; i < N; i++) {
      b2 = b1;
      b1 = b0;
      b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
    }

    return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
  }
};

} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H