aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h
blob: 13d9517e4dbfca8cde673d9b74437de920709562 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2020 Everton Constantino (everton.constantino@ibm.com)
// Copyright (C) 2021 Chip Kerchner (chip.kerchner@ibm.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H
#define EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H

#pragma GCC target("cpu=power10")

#ifdef __has_builtin
#if !__has_builtin(__builtin_vsx_assemble_pair)
#define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair
#endif
#endif

namespace Eigen {

namespace internal {

template<typename Scalar, typename Packet>
EIGEN_ALWAYS_INLINE void bsetzeroMMA(__vector_quad* acc)
{
  __builtin_mma_xxsetaccz(acc);
}

template<typename DataMapper, typename Index, typename Packet, const Index accCols>
EIGEN_ALWAYS_INLINE void storeAccumulator(Index i, Index j, const DataMapper& data, const Packet& alpha, __vector_quad* acc)
{
  PacketBlock<Packet, 4> result;
  __builtin_mma_disassemble_acc(&result.packet, acc);

  PacketBlock<Packet, 4> tRes;
  bload<DataMapper, Packet, Index, accCols, 0, ColMajor>(tRes, data, i, j);

  bscale<Packet>(tRes, result, alpha);

  data.template storePacketBlock<Packet, 4>(i, j, tRes);
}

template<typename DataMapper, typename Index, typename Packet, typename Packetc, const Index accColsC, int N>
EIGEN_ALWAYS_INLINE void storeComplexAccumulator(Index i, Index j, const DataMapper& data, const Packet& alphaReal, const Packet& alphaImag, __vector_quad* accReal, __vector_quad* accImag)
{
  PacketBlock<Packet, 4> resultReal, resultImag;
  __builtin_mma_disassemble_acc(&resultReal.packet, accReal);
  __builtin_mma_disassemble_acc(&resultImag.packet, accImag);

  PacketBlock<Packetc, 8> tRes;
  bload<DataMapper, Packetc, Index, accColsC, N, ColMajor>(tRes, data, i, j);

  PacketBlock<Packet,4> taccReal, taccImag;
  bscalec<Packet,4>(resultReal, resultImag, alphaReal, alphaImag, taccReal, taccImag);

  PacketBlock<Packetc, 4> acc1, acc2;
  bcouple<Packet, Packetc>(taccReal, taccImag, tRes, acc1, acc2);

  data.template storePacketBlock<Packetc, 4>(i + N*accColsC, j, acc1);
  data.template storePacketBlock<Packetc, 4>(i + (N+1)*accColsC, j, acc2);
}

// Defaults to float32, since Eigen still supports C++03 we can't use default template arguments
template<typename LhsPacket, typename RhsPacket, bool NegativeAccumulate>
EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad* acc, const RhsPacket& a, const LhsPacket& b)
{
  if(NegativeAccumulate)
  {
    __builtin_mma_xvf32gernp(acc, (__vector unsigned char)a, (__vector unsigned char)b);
  } else {
    __builtin_mma_xvf32gerpp(acc, (__vector unsigned char)a, (__vector unsigned char)b);
  }
}

template<typename LhsPacket, typename RhsPacket, bool NegativeAccumulate>
EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad* acc, const PacketBlock<Packet2d,2>& a, const Packet2d& b)
{
  __vector_pair* a0 = (__vector_pair *)(&a.packet[0]);
  if(NegativeAccumulate)
  {
    __builtin_mma_xvf64gernp(acc, *a0, (__vector unsigned char)b);
  } else {
    __builtin_mma_xvf64gerpp(acc, *a0, (__vector unsigned char)b);
  }
}

template<typename LhsPacket, typename RhsPacket, bool NegativeAccumulate>
EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad* acc, const __vector_pair& a, const Packet2d& b)
{
  if(NegativeAccumulate)
  {
    __builtin_mma_xvf64gernp(acc, (__vector_pair)a, (__vector unsigned char)b);
  } else {
    __builtin_mma_xvf64gerpp(acc, (__vector_pair)a, (__vector unsigned char)b);
  }
}

template<typename LhsPacket, typename RhsPacket, bool NegativeAccumulate>
EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad*, const __vector_pair&, const Packet4f&)
{
  // Just for compilation
}

template<typename Scalar, typename Packet, typename RhsPacket, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_ALWAYS_INLINE void pgercMMA(__vector_quad* accReal, __vector_quad* accImag, const Packet& lhsV, const Packet& lhsVi, const RhsPacket& rhsV, const RhsPacket& rhsVi)
{
  pgerMMA<Packet, RhsPacket, false>(accReal,  rhsV,  lhsV);
  if(LhsIsReal) {
    pgerMMA<Packet, RhsPacket, ConjugateRhs>(accImag, rhsVi,  lhsV);
  } else {
    if(!RhsIsReal) {
      pgerMMA<Packet, RhsPacket, ConjugateLhs == ConjugateRhs>(accReal, rhsVi, lhsVi);
      pgerMMA<Packet, RhsPacket, ConjugateRhs>(accImag, rhsVi,  lhsV);
    } else {
      EIGEN_UNUSED_VARIABLE(rhsVi);
    }
    pgerMMA<Packet, RhsPacket, ConjugateLhs>(accImag,  rhsV, lhsVi);
  }
}

// This is necessary because ploadRhs for double returns a pair of vectors when MMA is enabled.
template<typename Scalar, typename Packet>
EIGEN_ALWAYS_INLINE void ploadRhsMMA(const Scalar* rhs, Packet& rhsV)
{
  rhsV = ploadRhs<Scalar, Packet>((const Scalar*)(rhs));
} 

template<>
EIGEN_ALWAYS_INLINE void ploadRhsMMA<double, PacketBlock<Packet2d, 2> >(const double* rhs, PacketBlock<Packet2d, 2>& rhsV)
{
  rhsV.packet[0] = ploadRhs<double, Packet2d>((const double *)((Packet2d *)rhs      ));
  rhsV.packet[1] = ploadRhs<double, Packet2d>((const double *)(((Packet2d *)rhs) + 1));
}

template<>
EIGEN_ALWAYS_INLINE void ploadRhsMMA<double, __vector_pair>(const double* rhs, __vector_pair& rhsV)
{
#if EIGEN_COMP_LLVM
  __builtin_vsx_assemble_pair(&rhsV,
    (__vector unsigned char)(ploadRhs<double, Packet2d>((const double *)(((Packet2d *)rhs) + 1))),
    (__vector unsigned char)(ploadRhs<double, Packet2d>((const double *)((Packet2d *)rhs      ))));
#else
  __asm__ ("lxvp %x0,%1" : "=wa" (rhsV) : "Y" (*rhs));
#endif
}

template<>
EIGEN_ALWAYS_INLINE void ploadRhsMMA(const float*, __vector_pair&)
{
  // Just for compilation
}

// PEEL_MMA loop factor.
#define PEEL_MMA 7

#define MICRO_MMA_UNROLL(func) \
  func(0) func(1) func(2) func(3) func(4) func(5) func(6) func(7)

#define MICRO_MMA_LOAD_ONE(iter) \
  if (unroll_factor > iter) { \
    lhsV##iter = ploadLhs<Scalar, Packet>(lhs_ptr##iter); \
    lhs_ptr##iter += accCols; \
  } else { \
    EIGEN_UNUSED_VARIABLE(lhsV##iter); \
  }

#define MICRO_MMA_WORK_ONE(iter, type, peel) \
  if (unroll_factor > iter) { \
    pgerMMA<Packet, type, false>(&accZero##iter, rhsV##peel, lhsV##iter); \
  }

#define MICRO_MMA_TYPE_PEEL(func, func2, type, peel) \
  if (PEEL_MMA > peel) { \
    Packet lhsV0, lhsV1, lhsV2, lhsV3, lhsV4, lhsV5, lhsV6, lhsV7; \
    ploadRhsMMA<Scalar, type>(rhs_ptr + (accRows * peel), rhsV##peel); \
    MICRO_MMA_UNROLL(func2); \
    func(0,type,peel) func(1,type,peel) func(2,type,peel) func(3,type,peel) \
    func(4,type,peel) func(5,type,peel) func(6,type,peel) func(7,type,peel) \
  } else { \
    EIGEN_UNUSED_VARIABLE(rhsV##peel); \
  }

#define MICRO_MMA_UNROLL_TYPE_PEEL(func, func2, type) \
  type rhsV0, rhsV1, rhsV2, rhsV3, rhsV4, rhsV5, rhsV6, rhsV7, rhsV8, rhsV9; \
  MICRO_MMA_TYPE_PEEL(func,func2,type,0); MICRO_MMA_TYPE_PEEL(func,func2,type,1); \
  MICRO_MMA_TYPE_PEEL(func,func2,type,2); MICRO_MMA_TYPE_PEEL(func,func2,type,3); \
  MICRO_MMA_TYPE_PEEL(func,func2,type,4); MICRO_MMA_TYPE_PEEL(func,func2,type,5); \
  MICRO_MMA_TYPE_PEEL(func,func2,type,6); MICRO_MMA_TYPE_PEEL(func,func2,type,7); \
  MICRO_MMA_TYPE_PEEL(func,func2,type,8); MICRO_MMA_TYPE_PEEL(func,func2,type,9);

#define MICRO_MMA_UNROLL_TYPE_ONE(func, func2, type) \
  type rhsV0; \
  MICRO_MMA_TYPE_PEEL(func,func2,type,0);

#define MICRO_MMA_ONE_PEEL \
  if (sizeof(Scalar) == sizeof(float)) { \
    MICRO_MMA_UNROLL_TYPE_PEEL(MICRO_MMA_WORK_ONE, MICRO_MMA_LOAD_ONE, RhsPacket); \
  } else { \
    MICRO_MMA_UNROLL_TYPE_PEEL(MICRO_MMA_WORK_ONE, MICRO_MMA_LOAD_ONE, __vector_pair); \
  } \
  rhs_ptr += (accRows * PEEL_MMA);

#define MICRO_MMA_ONE \
  if (sizeof(Scalar) == sizeof(float)) { \
    MICRO_MMA_UNROLL_TYPE_ONE(MICRO_MMA_WORK_ONE, MICRO_MMA_LOAD_ONE, RhsPacket); \
  } else { \
    MICRO_MMA_UNROLL_TYPE_ONE(MICRO_MMA_WORK_ONE, MICRO_MMA_LOAD_ONE, __vector_pair); \
  } \
  rhs_ptr += accRows;

#define MICRO_MMA_DST_PTR_ONE(iter) \
  if (unroll_factor > iter) { \
    bsetzeroMMA<Scalar, Packet>(&accZero##iter); \
  } else { \
    EIGEN_UNUSED_VARIABLE(accZero##iter); \
  }

#define MICRO_MMA_DST_PTR MICRO_MMA_UNROLL(MICRO_MMA_DST_PTR_ONE)

#define MICRO_MMA_SRC_PTR_ONE(iter) \
  if (unroll_factor > iter) { \
    lhs_ptr##iter = lhs_base + ( (row/accCols) + iter )*strideA*accCols + accCols*offsetA; \
  } else { \
    EIGEN_UNUSED_VARIABLE(lhs_ptr##iter); \
  }

#define MICRO_MMA_SRC_PTR MICRO_MMA_UNROLL(MICRO_MMA_SRC_PTR_ONE)

#define MICRO_MMA_PREFETCH_ONE(iter) \
  if (unroll_factor > iter) { \
    EIGEN_POWER_PREFETCH(lhs_ptr##iter); \
  }

#define MICRO_MMA_PREFETCH MICRO_MMA_UNROLL(MICRO_MMA_PREFETCH_ONE)

#define MICRO_MMA_STORE_ONE(iter) \
  if (unroll_factor > iter) { \
    storeAccumulator<DataMapper, Index, Packet, accCols>(row + iter*accCols, col, res, pAlpha, &accZero##iter); \
  }

#define MICRO_MMA_STORE MICRO_MMA_UNROLL(MICRO_MMA_STORE_ONE)

template<int unroll_factor, typename Scalar, typename Packet, typename RhsPacket, typename DataMapper, typename Index, const Index accRows, const Index accCols>
EIGEN_STRONG_INLINE void gemm_unrolled_MMA_iteration(
  const DataMapper& res,
  const Scalar* lhs_base,
  const Scalar* rhs_base,
  Index depth,
  Index strideA,
  Index offsetA,
  Index& row,
  Index col,
  const Packet& pAlpha)
{
  const Scalar* rhs_ptr = rhs_base;
  const Scalar* lhs_ptr0, * lhs_ptr1, * lhs_ptr2, * lhs_ptr3, * lhs_ptr4, * lhs_ptr5, * lhs_ptr6, * lhs_ptr7;
  __vector_quad accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7;

  MICRO_MMA_SRC_PTR
  MICRO_MMA_DST_PTR

  Index k = 0;
  for(; k + PEEL_MMA <= depth; k+= PEEL_MMA)
  {
    EIGEN_POWER_PREFETCH(rhs_ptr);
    MICRO_MMA_PREFETCH
    MICRO_MMA_ONE_PEEL
  }
  for(; k < depth; k++)
  {
    MICRO_MMA_ONE
  }
  MICRO_MMA_STORE

  row += unroll_factor*accCols;
}

template<typename Scalar, typename Index, typename Packet, typename RhsPacket, typename DataMapper, const Index accRows, const Index accCols>
void gemmMMA(const DataMapper& res, const Scalar* blockA, const Scalar* blockB, Index rows, Index depth, Index cols, Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB)
{
      const Index remaining_rows = rows % accCols;
      const Index remaining_cols = cols % accRows;

      if( strideA == -1 ) strideA = depth;
      if( strideB == -1 ) strideB = depth;

      const Packet pAlpha = pset1<Packet>(alpha);
      const Packet pMask  = bmask<Packet>((const int)(remaining_rows));

      Index col = 0;
      for(; col + accRows <= cols; col += accRows)
      {
        const Scalar* rhs_base = blockB + col*strideB + accRows*offsetB;
        const Scalar* lhs_base = blockA;

        Index row = 0;
#define MAX_MMA_UNROLL 7
        while(row + MAX_MMA_UNROLL*accCols <= rows) {
          gemm_unrolled_MMA_iteration<MAX_MMA_UNROLL, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
        }
        switch( (rows-row)/accCols ) {
#if MAX_MMA_UNROLL > 7
          case 7:
            gemm_unrolled_MMA_iteration<7, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 6
          case 6:
            gemm_unrolled_MMA_iteration<6, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 5
          case 5:
            gemm_unrolled_MMA_iteration<5, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 4
          case 4:
            gemm_unrolled_MMA_iteration<4, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 3
          case 3:
            gemm_unrolled_MMA_iteration<3, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 2
          case 2:
            gemm_unrolled_MMA_iteration<2, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
#if MAX_MMA_UNROLL > 1
          case 1:
            gemm_unrolled_MMA_iteration<1, Scalar, Packet, RhsPacket, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, pAlpha);
            break;
#endif
          default:
            break;
        }
#undef MAX_MMA_UNROLL

        if(remaining_rows > 0)
        {
          gemm_extra_row<Scalar, Packet, DataMapper, Index, accRows, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, rows, cols, remaining_rows, pAlpha, pMask);
        }
      }

      if(remaining_cols > 0)
      {
        const Scalar* rhs_base = blockB + col*strideB + remaining_cols*offsetB;
        const Scalar* lhs_base = blockA;

        for(; col < cols; col++)
        {
          Index row = 0;

          gemm_unrolled_col<Scalar, Packet, DataMapper, Index, accCols>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, rows, col, remaining_cols, pAlpha);

          if (remaining_rows > 0)
          {
            gemm_extra_col<Scalar, Packet, DataMapper, Index, accRows>(res, lhs_base, rhs_base, depth, strideA, offsetA, row, col, remaining_rows, remaining_cols, pAlpha);
          }
          rhs_base++;
        }
      }
}

#define accColsC (accCols / 2)
#define advanceRows ((LhsIsReal) ? 1 : 2)
#define advanceCols ((RhsIsReal) ? 1 : 2)

// PEEL_COMPLEX_MMA loop factor.
#define PEEL_COMPLEX_MMA 7

#define MICRO_COMPLEX_MMA_UNROLL(func) \
  func(0) func(1) func(2) func(3) func(4)

#define MICRO_COMPLEX_MMA_LOAD_ONE(iter) \
  if (unroll_factor > iter) { \
    lhsV##iter = ploadLhs<Scalar, Packet>(lhs_ptr_real##iter); \
    lhs_ptr_real##iter += accCols; \
    if(!LhsIsReal) { \
      lhsVi##iter = ploadLhs<Scalar, Packet>(lhs_ptr_imag##iter); \
      lhs_ptr_imag##iter += accCols; \
    } else { \
      EIGEN_UNUSED_VARIABLE(lhsVi##iter); \
    } \
  } else { \
    EIGEN_UNUSED_VARIABLE(lhsV##iter); \
    EIGEN_UNUSED_VARIABLE(lhsVi##iter); \
  }

#define MICRO_COMPLEX_MMA_WORK_ONE(iter, type, peel) \
  if (unroll_factor > iter) { \
    pgercMMA<Scalar, Packet, type, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(&accReal##iter, &accImag##iter, lhsV##iter, lhsVi##iter, rhsV##peel, rhsVi##peel); \
  }

#define MICRO_COMPLEX_MMA_TYPE_PEEL(func, func2, type, peel) \
  if (PEEL_COMPLEX_MMA > peel) { \
    Packet lhsV0, lhsV1, lhsV2, lhsV3, lhsV4; \
    Packet lhsVi0, lhsVi1, lhsVi2, lhsVi3, lhsVi4; \
    ploadRhsMMA<Scalar, type>(rhs_ptr_real + (accRows * peel), rhsV##peel); \
    if(!RhsIsReal) { \
      ploadRhsMMA<Scalar, type>(rhs_ptr_imag + (accRows * peel), rhsVi##peel); \
    } else { \
      EIGEN_UNUSED_VARIABLE(rhsVi##peel); \
    } \
    MICRO_COMPLEX_MMA_UNROLL(func2); \
    func(0,type,peel) func(1,type,peel) func(2,type,peel) func(3,type,peel) func(4,type,peel) \
  } else { \
    EIGEN_UNUSED_VARIABLE(rhsV##peel); \
    EIGEN_UNUSED_VARIABLE(rhsVi##peel); \
  }

#define MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL(func, func2, type) \
  type rhsV0, rhsV1, rhsV2, rhsV3, rhsV4, rhsV5, rhsV6, rhsV7, rhsV8, rhsV9; \
  type rhsVi0, rhsVi1, rhsVi2, rhsVi3, rhsVi4, rhsVi5, rhsVi6, rhsVi7, rhsVi8, rhsVi9; \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,0); MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,1); \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,2); MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,3); \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,4); MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,5); \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,6); MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,7); \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,8); MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,9);

#define MICRO_COMPLEX_MMA_UNROLL_TYPE_ONE(func, func2, type) \
  type rhsV0, rhsVi0; \
  MICRO_COMPLEX_MMA_TYPE_PEEL(func,func2,type,0);

#define MICRO_COMPLEX_MMA_ONE_PEEL \
  if (sizeof(Scalar) == sizeof(float)) { \
    MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_MMA_LOAD_ONE, RhsPacket); \
  } else { \
    MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_MMA_LOAD_ONE, __vector_pair); \
  } \
  rhs_ptr_real += (accRows * PEEL_COMPLEX_MMA); \
  if(!RhsIsReal) rhs_ptr_imag += (accRows * PEEL_COMPLEX_MMA);

#define MICRO_COMPLEX_MMA_ONE \
  if (sizeof(Scalar) == sizeof(float)) { \
    MICRO_COMPLEX_MMA_UNROLL_TYPE_ONE(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_MMA_LOAD_ONE, RhsPacket); \
  } else { \
    MICRO_COMPLEX_MMA_UNROLL_TYPE_ONE(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_MMA_LOAD_ONE, __vector_pair); \
  } \
  rhs_ptr_real += accRows; \
  if(!RhsIsReal) rhs_ptr_imag += accRows;

#define MICRO_COMPLEX_MMA_DST_PTR_ONE(iter) \
  if (unroll_factor > iter) { \
    bsetzeroMMA<Scalar, Packet>(&accReal##iter); \
    bsetzeroMMA<Scalar, Packet>(&accImag##iter); \
  } else { \
    EIGEN_UNUSED_VARIABLE(accReal##iter); \
    EIGEN_UNUSED_VARIABLE(accImag##iter); \
  }

#define MICRO_COMPLEX_MMA_DST_PTR MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_DST_PTR_ONE)

#define MICRO_COMPLEX_MMA_SRC_PTR_ONE(iter) \
  if (unroll_factor > iter) { \
    lhs_ptr_real##iter = lhs_base + ( ((advanceRows*row)/accCols) + iter*advanceRows )*strideA*accCols + accCols*offsetA; \
    if(!LhsIsReal) { \
      lhs_ptr_imag##iter = lhs_ptr_real##iter + accCols*strideA; \
    } else { \
      EIGEN_UNUSED_VARIABLE(lhs_ptr_imag##iter); \
    } \
  } else { \
    EIGEN_UNUSED_VARIABLE(lhs_ptr_real##iter); \
    EIGEN_UNUSED_VARIABLE(lhs_ptr_imag##iter); \
  }

#define MICRO_COMPLEX_MMA_SRC_PTR MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_SRC_PTR_ONE)

#define MICRO_COMPLEX_MMA_PREFETCH_ONE(iter) \
  if (unroll_factor > iter) { \
    EIGEN_POWER_PREFETCH(lhs_ptr_real##iter); \
    if(!LhsIsReal) { \
      EIGEN_POWER_PREFETCH(lhs_ptr_imag##iter); \
    } \
  }

#define MICRO_COMPLEX_MMA_PREFETCH MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_PREFETCH_ONE)

#define MICRO_COMPLEX_MMA_STORE_ONE(iter) \
  if (unroll_factor > iter) { \
    storeComplexAccumulator<DataMapper, Index, Packet, Packetc, accColsC, 0>(row + iter*accCols, col, res, pAlphaReal, pAlphaImag, &accReal##iter, &accImag##iter); \
  }

#define MICRO_COMPLEX_MMA_STORE MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_STORE_ONE)

template<int unroll_factor, typename Scalar, typename Packet, typename Packetc, typename RhsPacket, typename DataMapper, typename Index, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
EIGEN_STRONG_INLINE void gemm_complex_unrolled_MMA_iteration(
  const DataMapper& res,
  const Scalar* lhs_base,
  const Scalar* rhs_base,
  Index depth,
  Index strideA,
  Index offsetA,
  Index strideB,
  Index& row,
  Index col,
  const Packet& pAlphaReal,
  const Packet& pAlphaImag)
{
  const Scalar* rhs_ptr_real = rhs_base;
  const Scalar* rhs_ptr_imag;
  if(!RhsIsReal) {
    rhs_ptr_imag = rhs_base + accRows*strideB;
  } else {
    EIGEN_UNUSED_VARIABLE(rhs_ptr_imag);
  }
  const Scalar* lhs_ptr_real0, * lhs_ptr_imag0, * lhs_ptr_real1, * lhs_ptr_imag1;
  const Scalar* lhs_ptr_real2, * lhs_ptr_imag2, * lhs_ptr_real3, * lhs_ptr_imag3;
  const Scalar* lhs_ptr_real4, * lhs_ptr_imag4;
  __vector_quad accReal0, accImag0, accReal1, accImag1, accReal2, accImag2, accReal3, accImag3, accReal4, accImag4;

  MICRO_COMPLEX_MMA_SRC_PTR
  MICRO_COMPLEX_MMA_DST_PTR

  Index k = 0;
  for(; k + PEEL_COMPLEX_MMA <= depth; k+= PEEL_COMPLEX_MMA)
  {
    EIGEN_POWER_PREFETCH(rhs_ptr_real);
    if(!RhsIsReal) {
      EIGEN_POWER_PREFETCH(rhs_ptr_imag);
    }
    MICRO_COMPLEX_MMA_PREFETCH
    MICRO_COMPLEX_MMA_ONE_PEEL
  }
  for(; k < depth; k++)
  {
    MICRO_COMPLEX_MMA_ONE
  }
  MICRO_COMPLEX_MMA_STORE

  row += unroll_factor*accCols;
}

template<typename LhsScalar, typename RhsScalar, typename Scalarc, typename Scalar, typename Index, typename Packet, typename Packetc, typename RhsPacket, typename DataMapper, const Index accRows, const Index accCols, bool ConjugateLhs, bool ConjugateRhs, bool LhsIsReal, bool RhsIsReal>
void gemm_complexMMA(const DataMapper& res, const LhsScalar* blockAc, const RhsScalar* blockBc, Index rows, Index depth, Index cols, Scalarc alpha, Index strideA, Index strideB, Index offsetA, Index offsetB)
{
      const Index remaining_rows = rows % accCols;
      const Index remaining_cols = cols % accRows;

      if( strideA == -1 ) strideA = depth;
      if( strideB == -1 ) strideB = depth;

      const Packet pAlphaReal = pset1<Packet>(alpha.real());
      const Packet pAlphaImag = pset1<Packet>(alpha.imag());
      const Packet pMask = bmask<Packet>((const int)(remaining_rows));

      const Scalar* blockA = (Scalar *) blockAc;
      const Scalar* blockB = (Scalar *) blockBc;

      Index col = 0;
      for(; col + accRows <= cols; col += accRows)
      {
        const Scalar* rhs_base = blockB + advanceCols*col*strideB + accRows*offsetB;
        const Scalar* lhs_base = blockA;
        Index row = 0;

#define MAX_COMPLEX_MMA_UNROLL 4
        while(row + MAX_COMPLEX_MMA_UNROLL*accCols <= rows) {
          gemm_complex_unrolled_MMA_iteration<MAX_COMPLEX_MMA_UNROLL, Scalar, Packet, Packetc, RhsPacket, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, pAlphaReal, pAlphaImag);
        }
        switch( (rows-row)/accCols ) {
#if MAX_COMPLEX_MMA_UNROLL > 4
          case 4:
            gemm_complex_unrolled_MMA_iteration<4, Scalar, Packet, Packetc, RhsPacket, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, pAlphaReal, pAlphaImag);
            break;
#endif
#if MAX_COMPLEX_MMA_UNROLL > 3
          case 3:
            gemm_complex_unrolled_MMA_iteration<3, Scalar, Packet, Packetc, RhsPacket, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, pAlphaReal, pAlphaImag);
            break;
#endif
#if MAX_COMPLEX_MMA_UNROLL > 2
          case 2:
            gemm_complex_unrolled_MMA_iteration<2, Scalar, Packet, Packetc, RhsPacket, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, pAlphaReal, pAlphaImag);
            break;
#endif
#if MAX_COMPLEX_MMA_UNROLL > 1
          case 1:
            gemm_complex_unrolled_MMA_iteration<1, Scalar, Packet, Packetc, RhsPacket, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, pAlphaReal, pAlphaImag);
            break;
#endif
          default:
            break;
        }
#undef MAX_COMPLEX_MMA_UNROLL

        if(remaining_rows > 0)
        {
          gemm_complex_extra_row<Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, rows, cols, remaining_rows, pAlphaReal, pAlphaImag, pMask);
        }
      }

      if(remaining_cols > 0)
      {
        const Scalar* rhs_base = blockB + advanceCols*col*strideB + remaining_cols*offsetB;
        const Scalar* lhs_base = blockA;

        for(; col < cols; col++)
        {
          Index row = 0;

          gemm_complex_unrolled_col<Scalar, Packet, Packetc, DataMapper, Index, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, rows, col, remaining_cols, pAlphaReal, pAlphaImag);

          if (remaining_rows > 0)
          {
            gemm_complex_extra_col<Scalar, Packet, Packetc, DataMapper, Index, accRows, accCols, ConjugateLhs, ConjugateRhs, LhsIsReal, RhsIsReal>(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, col, remaining_rows, remaining_cols, pAlphaReal, pAlphaImag);
          }
          rhs_base++;
        }
      }
}

#undef accColsC
#undef advanceRows
#undef advanceCols

#pragma GCC reset_options
} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H