aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/AVX512/MathFunctions.h
blob: 6fd726d29cffeb66926b3ebb1f337065ed8e51f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Pedro Gonnet (pedro.gonnet@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_
#define THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_

namespace Eigen {

namespace internal {

// Disable the code for older versions of gcc that don't support many of the required avx512 instrinsics.
#if EIGEN_GNUC_AT_LEAST(5, 3) || EIGEN_COMP_CLANG  || EIGEN_COMP_MSVC >= 1923

#define _EIGEN_DECLARE_CONST_Packet16f(NAME, X) \
  const Packet16f p16f_##NAME = pset1<Packet16f>(X)

#define _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(NAME, X) \
  const Packet16f p16f_##NAME =  preinterpret<Packet16f,Packet16i>(pset1<Packet16i>(X))

#define _EIGEN_DECLARE_CONST_Packet8d(NAME, X) \
  const Packet8d p8d_##NAME = pset1<Packet8d>(X)

#define _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(NAME, X) \
  const Packet8d p8d_##NAME = _mm512_castsi512_pd(_mm512_set1_epi64(X))

#define _EIGEN_DECLARE_CONST_Packet16bf(NAME, X) \
  const Packet16bf p16bf_##NAME = pset1<Packet16bf>(X)

#define _EIGEN_DECLARE_CONST_Packet16bf_FROM_INT(NAME, X) \
  const Packet16bf p16bf_##NAME =  preinterpret<Packet16bf,Packet16i>(pset1<Packet16i>(X))

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
plog<Packet16f>(const Packet16f& _x) {
  return plog_float(_x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
plog<Packet8d>(const Packet8d& _x) {
  return plog_double(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, plog)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog)

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
plog2<Packet16f>(const Packet16f& _x) {
  return plog2_float(_x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
plog2<Packet8d>(const Packet8d& _x) {
  return plog2_double(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, plog2)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog2)

// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
pexp<Packet16f>(const Packet16f& _x) {
  _EIGEN_DECLARE_CONST_Packet16f(1, 1.0f);
  _EIGEN_DECLARE_CONST_Packet16f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet16f(127, 127.0f);

  _EIGEN_DECLARE_CONST_Packet16f(exp_hi, 88.3762626647950f);
  _EIGEN_DECLARE_CONST_Packet16f(exp_lo, -88.3762626647949f);

  _EIGEN_DECLARE_CONST_Packet16f(cephes_LOG2EF, 1.44269504088896341f);

  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p0, 1.9875691500E-4f);
  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p1, 1.3981999507E-3f);
  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p2, 8.3334519073E-3f);
  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p3, 4.1665795894E-2f);
  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p4, 1.6666665459E-1f);
  _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p5, 5.0000001201E-1f);

  // Clamp x.
  Packet16f x = pmax(pmin(_x, p16f_exp_hi), p16f_exp_lo);

  // Express exp(x) as exp(m*ln(2) + r), start by extracting
  // m = floor(x/ln(2) + 0.5).
  Packet16f m = _mm512_floor_ps(pmadd(x, p16f_cephes_LOG2EF, p16f_half));

  // Get r = x - m*ln(2). Note that we can do this without losing more than one
  // ulp precision due to the FMA instruction.
  _EIGEN_DECLARE_CONST_Packet16f(nln2, -0.6931471805599453f);
  Packet16f r = _mm512_fmadd_ps(m, p16f_nln2, x);
  Packet16f r2 = pmul(r, r);
  Packet16f r3 = pmul(r2, r);

  // Evaluate the polynomial approximant,improved by instruction-level parallelism.
  Packet16f y, y1, y2;
  y  = pmadd(p16f_cephes_exp_p0, r, p16f_cephes_exp_p1);
  y1 = pmadd(p16f_cephes_exp_p3, r, p16f_cephes_exp_p4);
  y2 = padd(r, p16f_1);
  y  = pmadd(y, r, p16f_cephes_exp_p2);
  y1 = pmadd(y1, r, p16f_cephes_exp_p5);
  y  = pmadd(y, r3, y1);
  y  = pmadd(y, r2, y2);

  // Build emm0 = 2^m.
  Packet16i emm0 = _mm512_cvttps_epi32(padd(m, p16f_127));
  emm0 = _mm512_slli_epi32(emm0, 23);

  // Return 2^m * exp(r).
  return pmax(pmul(y, _mm512_castsi512_ps(emm0)), _x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
pexp<Packet8d>(const Packet8d& _x) {
  return pexp_double(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, pexp)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexp)

template <>
EIGEN_STRONG_INLINE Packet16h pfrexp(const Packet16h& a, Packet16h& exponent) {
  Packet16f fexponent;
  const Packet16h out = float2half(pfrexp<Packet16f>(half2float(a), fexponent));
  exponent = float2half(fexponent);
  return out;
}

template <>
EIGEN_STRONG_INLINE Packet16h pldexp(const Packet16h& a, const Packet16h& exponent) {
  return float2half(pldexp<Packet16f>(half2float(a), half2float(exponent)));
}

template <>
EIGEN_STRONG_INLINE Packet16bf pfrexp(const Packet16bf& a, Packet16bf& exponent) {
  Packet16f fexponent;
  const Packet16bf out = F32ToBf16(pfrexp<Packet16f>(Bf16ToF32(a), fexponent));
  exponent = F32ToBf16(fexponent);
  return out;
}

template <>
EIGEN_STRONG_INLINE Packet16bf pldexp(const Packet16bf& a, const Packet16bf& exponent) {
  return F32ToBf16(pldexp<Packet16f>(Bf16ToF32(a), Bf16ToF32(exponent)));
}

// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. The main advantage of this approach is not just speed, but
// also the fact that it can be inlined and pipelined with other computations,
// further reducing its effective latency.
#if EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
psqrt<Packet16f>(const Packet16f& _x) {
  Packet16f neg_half = pmul(_x, pset1<Packet16f>(-.5f));
  __mmask16 denormal_mask = _mm512_kand(
      _mm512_cmp_ps_mask(_x, pset1<Packet16f>((std::numeric_limits<float>::min)()),
                        _CMP_LT_OQ),
      _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_GE_OQ));

  Packet16f x = _mm512_rsqrt14_ps(_x);

  // Do a single step of Newton's iteration.
  x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet16f>(1.5f)));

  // Flush results for denormals to zero.
  return _mm512_mask_blend_ps(denormal_mask, pmul(_x,x), _mm512_setzero_ps());
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
psqrt<Packet8d>(const Packet8d& _x) {
  Packet8d neg_half = pmul(_x, pset1<Packet8d>(-.5));
  __mmask16 denormal_mask = _mm512_kand(
      _mm512_cmp_pd_mask(_x, pset1<Packet8d>((std::numeric_limits<double>::min)()),
                        _CMP_LT_OQ),
      _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_GE_OQ));

  Packet8d x = _mm512_rsqrt14_pd(_x);

  // Do a single step of Newton's iteration.
  x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));

  // Do a second step of Newton's iteration.
  x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));

  return _mm512_mask_blend_pd(denormal_mask, pmul(_x,x), _mm512_setzero_pd());
}
#else
template <>
EIGEN_STRONG_INLINE Packet16f psqrt<Packet16f>(const Packet16f& x) {
  return _mm512_sqrt_ps(x);
}

template <>
EIGEN_STRONG_INLINE Packet8d psqrt<Packet8d>(const Packet8d& x) {
  return _mm512_sqrt_pd(x);
}
#endif

F16_PACKET_FUNCTION(Packet16f, Packet16h, psqrt)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psqrt)

// prsqrt for float.
#if defined(EIGEN_VECTORIZE_AVX512ER)

template <>
EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
  return _mm512_rsqrt28_ps(x);
}
#elif EIGEN_FAST_MATH

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
prsqrt<Packet16f>(const Packet16f& _x) {
  _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(inf, 0x7f800000);
  _EIGEN_DECLARE_CONST_Packet16f(one_point_five, 1.5f);
  _EIGEN_DECLARE_CONST_Packet16f(minus_half, -0.5f);

  Packet16f neg_half = pmul(_x, p16f_minus_half);

  // Identity infinite, negative and denormal arguments.
  __mmask16 inf_mask = _mm512_cmp_ps_mask(_x, p16f_inf, _CMP_EQ_OQ);
  __mmask16 not_pos_mask = _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_LE_OQ);
  __mmask16 not_finite_pos_mask = not_pos_mask | inf_mask;

  // Compute an approximate result using the rsqrt intrinsic, forcing +inf
  // for denormals for consistency with AVX and SSE implementations.
  Packet16f y_approx = _mm512_rsqrt14_ps(_x);

  // Do a single step of Newton-Raphson iteration to improve the approximation.
  // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
  // It is essential to evaluate the inner term like this because forming
  // y_n^2 may over- or underflow.
  Packet16f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p16f_one_point_five));

  // Select the result of the Newton-Raphson step for positive finite arguments.
  // For other arguments, choose the output of the intrinsic. This will
  // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
  return _mm512_mask_blend_ps(not_finite_pos_mask, y_newton, y_approx);
}
#else

template <>
EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
  _EIGEN_DECLARE_CONST_Packet16f(one, 1.0f);
  return _mm512_div_ps(p16f_one, _mm512_sqrt_ps(x));
}
#endif

F16_PACKET_FUNCTION(Packet16f, Packet16h, prsqrt)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, prsqrt)

// prsqrt for double.
#if EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
prsqrt<Packet8d>(const Packet8d& _x) {
  _EIGEN_DECLARE_CONST_Packet8d(one_point_five, 1.5);
  _EIGEN_DECLARE_CONST_Packet8d(minus_half, -0.5);
  _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(inf, 0x7ff0000000000000LL);

  Packet8d neg_half = pmul(_x, p8d_minus_half);

  // Identity infinite, negative and denormal arguments.
  __mmask8 inf_mask = _mm512_cmp_pd_mask(_x, p8d_inf, _CMP_EQ_OQ);
  __mmask8 not_pos_mask = _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_LE_OQ);
  __mmask8 not_finite_pos_mask = not_pos_mask | inf_mask;

  // Compute an approximate result using the rsqrt intrinsic, forcing +inf
  // for denormals for consistency with AVX and SSE implementations.
#if defined(EIGEN_VECTORIZE_AVX512ER)
  Packet8d y_approx = _mm512_rsqrt28_pd(_x);
#else
  Packet8d y_approx = _mm512_rsqrt14_pd(_x);
#endif
  // Do one or two steps of Newton-Raphson's to improve the approximation, depending on the
  // starting accuracy (either 2^-14 or 2^-28, depending on whether AVX512ER is available).
  // The Newton-Raphson algorithm has quadratic convergence and roughly doubles the number
  // of correct digits for each step.
  // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
  // It is essential to evaluate the inner term like this because forming
  // y_n^2 may over- or underflow.
  Packet8d y_newton = pmul(y_approx, pmadd(neg_half, pmul(y_approx, y_approx), p8d_one_point_five));
#if !defined(EIGEN_VECTORIZE_AVX512ER)
  y_newton = pmul(y_newton, pmadd(y_newton, pmul(neg_half, y_newton), p8d_one_point_five));
#endif
  // Select the result of the Newton-Raphson step for positive finite arguments.
  // For other arguments, choose the output of the intrinsic. This will
  // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
  return _mm512_mask_blend_pd(not_finite_pos_mask, y_newton, y_approx);
}
#else
template <>
EIGEN_STRONG_INLINE Packet8d prsqrt<Packet8d>(const Packet8d& x) {
  _EIGEN_DECLARE_CONST_Packet8d(one, 1.0f);
  return _mm512_div_pd(p8d_one, _mm512_sqrt_pd(x));
}
#endif

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet16f plog1p<Packet16f>(const Packet16f& _x) {
  return generic_plog1p(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, plog1p)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog1p)

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet16f pexpm1<Packet16f>(const Packet16f& _x) {
  return generic_expm1(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, pexpm1)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexpm1)

#endif


template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
psin<Packet16f>(const Packet16f& _x) {
  return psin_float(_x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
pcos<Packet16f>(const Packet16f& _x) {
  return pcos_float(_x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
ptanh<Packet16f>(const Packet16f& _x) {
  return internal::generic_fast_tanh_float(_x);
}

F16_PACKET_FUNCTION(Packet16f, Packet16h, psin)
F16_PACKET_FUNCTION(Packet16f, Packet16h, pcos)
F16_PACKET_FUNCTION(Packet16f, Packet16h, ptanh)

BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psin)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pcos)
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, ptanh)

}  // end namespace internal

}  // end namespace Eigen

#endif  // THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_