aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/AVX/PacketMath.h
blob: 35a329e3f2a968a155988b066ef55eb29e0edca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PACKET_MATH_AVX_H
#define EIGEN_PACKET_MATH_AVX_H

namespace Eigen {

namespace internal {

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif

#if !defined(EIGEN_VECTORIZE_AVX512) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS)
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif

#ifdef EIGEN_VECTORIZE_FMA
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#endif

typedef __m256  Packet8f;
typedef __m256i Packet8i;
typedef __m256d Packet4d;
typedef eigen_packet_wrapper<__m128i, 2> Packet8h;

template<> struct is_arithmetic<__m256>  { enum { value = true }; };
template<> struct is_arithmetic<__m256i> { enum { value = true }; };
template<> struct is_arithmetic<__m256d> { enum { value = true }; };
template<> struct is_arithmetic<Packet8h> { enum { value = true }; };

#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
  const Packet8f p8f_##NAME = pset1<Packet8f>(X)

#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
  const Packet4d p4d_##NAME = pset1<Packet4d>(X)

#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
  const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))

#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
  const Packet8i p8i_##NAME = pset1<Packet8i>(X)

// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
// to leverage AVX512 instructions.
#ifndef EIGEN_VECTORIZE_AVX512
template<> struct packet_traits<float>  : default_packet_traits
{
  typedef Packet8f type;
  typedef Packet4f half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 8,
    HasHalfPacket = 1,
    HasInsert = 1,

    HasDiv = 1,
    HasSin = EIGEN_FAST_MATH,
    HasCos = EIGEN_FAST_MATH,
    HasLog = 1,
    HasLog1p = 1,
    HasExpm1 = 1,
    HasExp = 1,
    HasNdtri = 1,
    HasBessel = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasTanh = EIGEN_FAST_MATH,
    HasErf = EIGEN_FAST_MATH,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1,
    HasRint = 1
  };
};
template<> struct packet_traits<double> : default_packet_traits
{
  typedef Packet4d type;
  typedef Packet2d half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=4,
    HasHalfPacket = 1,
    HasInsert = 1,

    HasDiv  = 1,
    HasExp  = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1
  };
};

template <>
struct packet_traits<Eigen::half> : default_packet_traits {
  typedef Packet8h type;
  // There is no half-size packet for Packet8h.
  typedef Packet8h half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 8,
    HasHalfPacket = 0,
    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasConj   = 0,
    HasSetLinear = 0,
    HasSqrt = 0,
    HasRsqrt = 0,
    HasExp = 0,
    HasLog = 0,
    HasBlend = 0,
    HasInsert = 1
  };
};
#endif

template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };

/* Proper support for integers is only provided by AVX2. In the meantime, we'll
   use SSE instructions and packets to deal with integers.
template<> struct packet_traits<int>    : default_packet_traits
{
  typedef Packet8i type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=8
  };
};
*/

template<> struct unpacket_traits<Packet8f> {
  typedef float     type;
  typedef Packet4f  half;
  typedef Packet8i  integer_packet;
  typedef uint8_t   mask_t;
  enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true};
};
template<> struct unpacket_traits<Packet4d> {
  typedef double type;
  typedef Packet2d half;
  enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
};
template<> struct unpacket_traits<Packet8i> { typedef int    type; typedef Packet4i half; enum {size=8, alignment=Aligned32, vectorizable=false, masked_load_available=false, masked_store_available=false}; };

template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float&  from) { return _mm256_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int&    from) { return _mm256_set1_epi32(from); }

template<> EIGEN_STRONG_INLINE Packet8f pset1frombits<Packet8f>(unsigned int from) { return _mm256_castsi256_ps(pset1<Packet8i>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f& /*a*/) { return _mm256_setzero_ps(); }
template<> EIGEN_STRONG_INLINE Packet4d pzero(const Packet4d& /*a*/) { return _mm256_setzero_pd(); }
template<> EIGEN_STRONG_INLINE Packet8i pzero(const Packet8i& /*a*/) { return _mm256_setzero_si256(); }

template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float*  from) { return _mm256_broadcast_ss(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }

template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }

template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_add_epi32(a,b);
#else
  __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
{
  return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
}
template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
{
  return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
}

template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); }


template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by AVX");
  return pset1<Packet8i>(0);
}

#ifdef EIGEN_VECTORIZE_FMA
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
  // Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
  //  and even register spilling with clang>=6.0 (bug 1637).
  // Gcc stupidly generates a vfmadd132ps instruction.
  // So let's enforce it to generate a vfmadd231ps instruction since the most common use
  //  case is to accumulate the result of the product.
  Packet8f res = c;
  __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_ps(a,b,c);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
  // see above
  Packet4d res = c;
  __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_pd(a,b,c);
#endif
}
#endif

template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // There appears to be a bug in GCC, by which the optimizer may flip
  // the argument order in calls to _mm_min_ps/_mm_max_ps, so we have to
  // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
  // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
  Packet8f res;
  asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::min.
  return _mm256_min_ps(b,a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet4d res;
  asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::min.
  return _mm256_min_pd(b,a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet8f res;
  asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::max.
  return _mm256_max_ps(b,a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet4d res;
  asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::max.
  return _mm256_max_pd(b,a);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LT_OQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt_or_nan(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a, b, _CMP_NGE_UQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_eq(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_EQ_OQ); }

template<> EIGEN_STRONG_INLINE Packet4d pcmp_le(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LE_OQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LT_OQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); }


template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_cmpeq_epi32(a,b);
#else
  __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f print<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
template<> EIGEN_STRONG_INLINE Packet4d print<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); }

template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); }

template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); }


template<> EIGEN_STRONG_INLINE Packet8i ptrue<Packet8i>(const Packet8i& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqd has lower latency than the more general vcmpps
  return _mm256_cmpeq_epi32(a,a);
#else
  const __m256 b = _mm256_castsi256_ps(a);
  return _mm256_castps_si256(_mm256_cmp_ps(b,b,_CMP_TRUE_UQ));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f ptrue<Packet8f>(const Packet8f& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqd has lower latency than the more general vcmpps
  const __m256i b = _mm256_castps_si256(a);
  return _mm256_castsi256_ps(_mm256_cmpeq_epi32(b,b));
#else
  return _mm256_cmp_ps(a,a,_CMP_TRUE_UQ);
#endif
}

template<> EIGEN_STRONG_INLINE Packet4d ptrue<Packet4d>(const Packet4d& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqq has lower latency than the more general vcmppd
  const __m256i b = _mm256_castpd_si256(a);
  return _mm256_castsi256_pd(_mm256_cmpeq_epi64(b,b));
#else
  return _mm256_cmp_pd(a,a,_CMP_TRUE_UQ);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pand<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_and_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i por<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_or_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pxor<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_xor_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(b,a); }
template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(b,a); }
template<> EIGEN_STRONG_INLINE Packet8i pandnot<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_andnot_si256(b,a);
#else
  return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a)
{
  const Packet8f mask = pset1frombits<Packet8f>(0x80000000u);
  const Packet8f prev0dot5 = pset1frombits<Packet8f>(0x3EFFFFFFu);
  return _mm256_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}
template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a)
{
  const Packet4d mask = _mm256_castsi256_pd(_mm256_set_epi64x(0x8000000000000000ull, 0x8000000000000000ull, 0x8000000000000000ull, 0x8000000000000000ull));
  const Packet4d prev0dot5 = _mm256_castsi256_pd(_mm256_set_epi64x(0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull));
  return _mm256_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}

template<> EIGEN_STRONG_INLINE Packet8f pselect<Packet8f>(const Packet8f& mask, const Packet8f& a, const Packet8f& b)
{ return _mm256_blendv_ps(b,a,mask); }
template<> EIGEN_STRONG_INLINE Packet4d pselect<Packet4d>(const Packet4d& mask, const Packet4d& a, const Packet4d& b)
{ return _mm256_blendv_pd(b,a,mask); }

template<int N> EIGEN_STRONG_INLINE Packet8i parithmetic_shift_right(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_srai_epi32(a, N);
#else
  __m128i lo = _mm_srai_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_srai_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_right(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_srli_epi32(a, N);
#else
  __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_left(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_slli_epi32(a, N);
#else
  __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float*   from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double*  from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int*     from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from, uint8_t umask) {
  Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
  const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
  mask = por<Packet8i>(mask, bit_mask);
  mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
  EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask);
}

// Loads 4 floats from memory a returns the packet {a0, a0  a1, a1, a2, a2, a3, a3}
template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
{
  // TODO try to find a way to avoid the need of a temporary register
//   Packet8f tmp  = _mm256_castps128_ps256(_mm_loadu_ps(from));
//   tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1);
//   return _mm256_unpacklo_ps(tmp,tmp);

  // _mm256_insertf128_ps is very slow on Haswell, thus:
  Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
  // mimic an "inplace" permutation of the lower 128bits using a blend
  tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
  // then we can perform a consistent permutation on the global register to get everything in shape:
  return  _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
}
// Loads 2 doubles from memory a returns the packet {a0, a0  a1, a1}
template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
{
  Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
  return  _mm256_permute_pd(tmp, 3<<2);
}

// Loads 2 floats from memory a returns the packet {a0, a0  a0, a0, a1, a1, a1, a1}
template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
{
  Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
  return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
}

template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet8f& from, uint8_t umask) {
  Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
  const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
  mask = por<Packet8i>(mask, bit_mask);
  mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
  EIGEN_DEBUG_UNALIGNED_STORE return _mm256_maskstore_ps(to, mask, from);
}

// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride)
{
  return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
                       from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride)
{
  return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
{
  __m128 low = _mm256_extractf128_ps(from, 0);
  to[stride*0] = _mm_cvtss_f32(low);
  to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1));
  to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2));
  to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3));

  __m128 high = _mm256_extractf128_ps(from, 1);
  to[stride*4] = _mm_cvtss_f32(high);
  to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1));
  to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
  to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride)
{
  __m128d low = _mm256_extractf128_pd(from, 0);
  to[stride*0] = _mm_cvtsd_f64(low);
  to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1));
  __m128d high = _mm256_extractf128_pd(from, 1);
  to[stride*2] = _mm_cvtsd_f64(high);
  to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
}

template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
{
  Packet8f pa = pset1<Packet8f>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a)
{
  Packet4d pa = pset1<Packet4d>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
{
  Packet8i pa = pset1<Packet8i>(a);
  pstore(to, pa);
}

#ifndef EIGEN_VECTORIZE_AVX512
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float*   addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*       addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
#endif

template<> EIGEN_STRONG_INLINE float  pfirst<Packet8f>(const Packet8f& a) {
  return _mm_cvtss_f32(_mm256_castps256_ps128(a));
}
template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) {
  return _mm_cvtsd_f64(_mm256_castpd256_pd128(a));
}
template<> EIGEN_STRONG_INLINE int    pfirst<Packet8i>(const Packet8i& a) {
  return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
}


template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a)
{
  __m256 tmp = _mm256_shuffle_ps(a,a,0x1b);
  return _mm256_permute2f128_ps(tmp, tmp, 1);
}
template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
{
   __m256d tmp = _mm256_shuffle_pd(a,a,5);
  return _mm256_permute2f128_pd(tmp, tmp, 1);
  #if 0
  // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd
  // exhibit the same latency/throughput, but it is here for future reference/benchmarking...
  __m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
    return _mm256_permute_pd(swap_halves,5);
  #endif
}

// pabs should be ok
template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
{
  const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
  return _mm256_and_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
{
  const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
  return _mm256_and_pd(a,mask);
}

template<> EIGEN_STRONG_INLINE Packet8f pfrexp<Packet8f>(const Packet8f& a, Packet8f& exponent) {
  return pfrexp_float(a,exponent);
}

template<> EIGEN_STRONG_INLINE Packet8f pldexp<Packet8f>(const Packet8f& a, const Packet8f& exponent) {
  return pldexp_float(a,exponent);
}

template<> EIGEN_STRONG_INLINE Packet4d pldexp<Packet4d>(const Packet4d& a, const Packet4d& exponent) {
  // Build e=2^n by constructing the exponents in a 128-bit vector and
  // shifting them to where they belong in double-precision values.
  Packet4i cst_1023 = pset1<Packet4i>(1023);
  __m128i emm0 = _mm256_cvtpd_epi32(exponent);
  emm0 = _mm_add_epi32(emm0, cst_1023);
  emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
  __m128i lo = _mm_slli_epi64(emm0, 52);
  __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
  __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
  e = _mm256_insertf128_si256(e, hi, 1);
  return pmul(a,_mm256_castsi256_pd(e));
}

template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a)
{
  return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1))));
}
template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
{
  return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1))));
}

template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4<Packet8f>(const Packet8f& a)
{
  return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
}

template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
{
  Packet8f tmp;
  tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a)
{
  Packet4d tmp;
  tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}

template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}

// not needed yet
// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x)
// {
//   return _mm256_movemask_ps(x)==0xFF;
// }

template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x)
{
  return _mm256_movemask_ps(x)!=0;
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,8>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]);
  __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]);
  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
  __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0));
  __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2));
  __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0));
  __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2));
  kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20);
  kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20);
  kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31);
  kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31);
  kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31);
  kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,4>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);

  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));

  kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31);
  kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4d,4>& kernel) {
  __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
  __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0);
  __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15);
  __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0);

  kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32);
  kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49);
  kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32);
  kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49);
}

template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
  const __m256 zero = _mm256_setzero_ps();
  const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
  const __m256d zero = _mm256_setzero_pd();
  const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
}

// Packet math for Eigen::half
template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; };

template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) {
  return _mm_set1_epi16(from.x);
}

template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet8h>(const Packet8h& from) {
  return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_extract_epi16(from, 0)));
}

template<> EIGEN_STRONG_INLINE Packet8h pload<Packet8h>(const Eigen::half* from) {
  return _mm_load_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE Packet8h ploadu<Packet8h>(const Eigen::half* from) {
  return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet8h& from) {
  _mm_store_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet8h& from) {
  _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE Packet8h
ploaddup<Packet8h>(const Eigen::half*  from) {
  unsigned short a = from[0].x;
  unsigned short b = from[1].x;
  unsigned short c = from[2].x;
  unsigned short d = from[3].x;
  return _mm_set_epi16(d, d, c, c, b, b, a, a);
}

template<> EIGEN_STRONG_INLINE Packet8h
ploadquad<Packet8h>(const Eigen::half* from) {
  unsigned short a = from[0].x;
  unsigned short b = from[1].x;
  return _mm_set_epi16(b, b, b, b, a, a, a, a);
}

EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) {
#ifdef EIGEN_HAS_FP16_C
  return _mm256_cvtph_ps(a);
#else
  EIGEN_ALIGN32 Eigen::half aux[8];
  pstore(aux, a);
  float f0(aux[0]);
  float f1(aux[1]);
  float f2(aux[2]);
  float f3(aux[3]);
  float f4(aux[4]);
  float f5(aux[5]);
  float f6(aux[6]);
  float f7(aux[7]);

  return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0);
#endif
}

EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) {
#ifdef EIGEN_HAS_FP16_C
  return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
#else
  EIGEN_ALIGN32 float aux[8];
  pstore(aux, a);
  Eigen::half h0(aux[0]);
  Eigen::half h1(aux[1]);
  Eigen::half h2(aux[2]);
  Eigen::half h3(aux[3]);
  Eigen::half h4(aux[4]);
  Eigen::half h5(aux[5]);
  Eigen::half h6(aux[6]);
  Eigen::half h7(aux[7]);

  return _mm_set_epi16(h7.x, h6.x, h5.x, h4.x, h3.x, h2.x, h1.x, h0.x);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h& a) {
 return _mm_cmpeq_epi32(a, a);
}

template<> EIGEN_STRONG_INLINE Packet8h por(const Packet8h& a,const Packet8h& b) {
  // in some cases Packet4i is a wrapper around __m128i, so we either need to
  // cast to Packet4i to directly call the intrinsics as below:
  return _mm_or_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h& a,const Packet8h& b) {
  return _mm_xor_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pand(const Packet8h& a,const Packet8h& b) {
  return _mm_and_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h& a,const Packet8h& b) {
  return _mm_andnot_si128(b,a);
}

template<> EIGEN_STRONG_INLINE Packet8h pselect(const Packet8h& mask, const Packet8h& a, const Packet8h& b) {
  return _mm_blendv_epi8(b, a, mask);
}

template<> EIGEN_STRONG_INLINE Packet8h pcmp_eq(const Packet8h& a,const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = pcmp_eq(af, bf);
  // Pack the 32-bit flags into 16-bits flags.
  return _mm_packs_epi32(_mm256_extractf128_si256(_mm256_castps_si256(rf), 0),
                         _mm256_extractf128_si256(_mm256_castps_si256(rf), 1));
}

template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) {
  Packet8h sign_mask = _mm_set1_epi16(static_cast<unsigned short>(0x8000));
  return _mm_xor_si128(a, sign_mask);
}

template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = padd(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h psub<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = psub(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pmul<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = pmul(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pdiv<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = pdiv(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride)
{
  return _mm_set_epi16(from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x, from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
}

template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half* to, const Packet8h& from, Index stride)
{
  EIGEN_ALIGN32 Eigen::half aux[8];
  pstore(aux, from);
  to[stride*0] = aux[0];
  to[stride*1] = aux[1];
  to[stride*2] = aux[2];
  to[stride*3] = aux[3];
  to[stride*4] = aux[4];
  to[stride*5] = aux[5];
  to[stride*6] = aux[6];
  to[stride*7] = aux[7];
}

template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_max<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_min<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_min<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_mul<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_mul<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Packet8h preverse(const Packet8h& a)
{
  __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1);
  return _mm_shuffle_epi8(a,m);
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,8>& kernel) {
  __m128i a = kernel.packet[0];
  __m128i b = kernel.packet[1];
  __m128i c = kernel.packet[2];
  __m128i d = kernel.packet[3];
  __m128i e = kernel.packet[4];
  __m128i f = kernel.packet[5];
  __m128i g = kernel.packet[6];
  __m128i h = kernel.packet[7];

  __m128i a03b03 = _mm_unpacklo_epi16(a, b);
  __m128i c03d03 = _mm_unpacklo_epi16(c, d);
  __m128i e03f03 = _mm_unpacklo_epi16(e, f);
  __m128i g03h03 = _mm_unpacklo_epi16(g, h);
  __m128i a47b47 = _mm_unpackhi_epi16(a, b);
  __m128i c47d47 = _mm_unpackhi_epi16(c, d);
  __m128i e47f47 = _mm_unpackhi_epi16(e, f);
  __m128i g47h47 = _mm_unpackhi_epi16(g, h);

  __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
  __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
  __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
  __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
  __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
  __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
  __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
  __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);

  __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
  __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
  __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
  __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
  __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
  __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
  __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
  __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);

  kernel.packet[0] = a0b0c0d0e0f0g0h0;
  kernel.packet[1] = a1b1c1d1e1f1g1h1;
  kernel.packet[2] = a2b2c2d2e2f2g2h2;
  kernel.packet[3] = a3b3c3d3e3f3g3h3;
  kernel.packet[4] = a4b4c4d4e4f4g4h4;
  kernel.packet[5] = a5b5c5d5e5f5g5h5;
  kernel.packet[6] = a6b6c6d6e6f6g6h6;
  kernel.packet[7] = a7b7c7d7e7f7g7h7;
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,4>& kernel) {
  EIGEN_ALIGN32 Eigen::half in[4][8];
  pstore<Eigen::half>(in[0], kernel.packet[0]);
  pstore<Eigen::half>(in[1], kernel.packet[1]);
  pstore<Eigen::half>(in[2], kernel.packet[2]);
  pstore<Eigen::half>(in[3], kernel.packet[3]);

  EIGEN_ALIGN32 Eigen::half out[4][8];

  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      out[i][j] = in[j][2*i];
    }
    for (int j = 0; j < 4; ++j) {
      out[i][j+4] = in[j][2*i+1];
    }
  }

  kernel.packet[0] = pload<Packet8h>(out[0]);
  kernel.packet[1] = pload<Packet8h>(out[1]);
  kernel.packet[2] = pload<Packet8h>(out[2]);
  kernel.packet[3] = pload<Packet8h>(out[3]);
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PACKET_MATH_AVX_H