aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/AVX/PacketMath.h
blob: dd3f243d24ab3401b51aec8acca07de176c19478 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PACKET_MATH_AVX_H
#define EIGEN_PACKET_MATH_AVX_H

namespace Eigen {

namespace internal {

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif

#if !defined(EIGEN_VECTORIZE_AVX512) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS)
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif

#ifdef EIGEN_VECTORIZE_FMA
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#endif

typedef __m256  Packet8f;
typedef __m256i Packet8i;
typedef __m256d Packet4d;
typedef eigen_packet_wrapper<__m128i, 2> Packet8h;
typedef eigen_packet_wrapper<__m128i, 3> Packet8bf;

template<> struct is_arithmetic<__m256>  { enum { value = true }; };
template<> struct is_arithmetic<__m256i> { enum { value = true }; };
template<> struct is_arithmetic<__m256d> { enum { value = true }; };
template<> struct is_arithmetic<Packet8h> { enum { value = true }; };
template<> struct is_arithmetic<Packet8bf> { enum { value = true }; };

#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
  const Packet8f p8f_##NAME = pset1<Packet8f>(X)

#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
  const Packet4d p4d_##NAME = pset1<Packet4d>(X)

#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
  const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))

#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
  const Packet8i p8i_##NAME = pset1<Packet8i>(X)

// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
// to leverage AVX512 instructions.
#ifndef EIGEN_VECTORIZE_AVX512
template<> struct packet_traits<float>  : default_packet_traits
{
  typedef Packet8f type;
  typedef Packet4f half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 8,
    HasHalfPacket = 1,

    HasCmp  = 1,
    HasDiv = 1,
    HasSin = EIGEN_FAST_MATH,
    HasCos = EIGEN_FAST_MATH,
    HasLog = 1,
    HasLog1p = 1,
    HasExpm1 = 1,
    HasExp = 1,
    HasNdtri = 1,
    HasBessel = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasTanh = EIGEN_FAST_MATH,
    HasErf = EIGEN_FAST_MATH,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1,
    HasRint = 1
  };
};
template<> struct packet_traits<double> : default_packet_traits
{
  typedef Packet4d type;
  typedef Packet2d half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=4,
    HasHalfPacket = 1,

    HasCmp  = 1,
    HasDiv  = 1,
    HasLog  = 1,
    HasExp  = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1,
    HasRint = 1
  };
};

template <>
struct packet_traits<Eigen::half> : default_packet_traits {
  typedef Packet8h type;
  // There is no half-size packet for Packet8h.
  typedef Packet8h half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 8,
    HasHalfPacket = 0,

    HasCmp    = 1,
    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasSin    = EIGEN_FAST_MATH,
    HasCos    = EIGEN_FAST_MATH,
    HasNegate = 1,
    HasAbs    = 1,
    HasAbs2   = 0,
    HasMin    = 1,
    HasMax    = 1,
    HasConj   = 1,
    HasSetLinear = 0,
    HasLog    = 1,
    HasLog1p  = 1,
    HasExpm1  = 1,
    HasExp    = 1,
    HasSqrt   = 1,
    HasRsqrt  = 1,
    HasTanh   = EIGEN_FAST_MATH,
    HasErf    = EIGEN_FAST_MATH,
    HasBlend  = 0,
    HasRound  = 1,
    HasFloor  = 1,
    HasCeil   = 1,
    HasRint   = 1,
    HasBessel = 1,
    HasNdtri  = 1
  };
};

template <>
struct packet_traits<bfloat16> : default_packet_traits {
  typedef Packet8bf type;
  // There is no half-size packet for current Packet8bf.
  // TODO: support as SSE path.
  typedef Packet8bf half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 8,
    HasHalfPacket = 0,

    HasCmp = 1,
    HasAdd = 1,
    HasSub = 1,
    HasMul = 1,
    HasDiv = 1,
    HasSin = EIGEN_FAST_MATH,
    HasCos = EIGEN_FAST_MATH,
    HasNegate = 1,
    HasAbs    = 1,
    HasAbs2   = 0,
    HasMin    = 1,
    HasMax    = 1,
    HasConj   = 1,
    HasSetLinear = 0,
    HasLog = 1,
    HasLog1p  = 1,
    HasExpm1  = 1,
    HasExp = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasTanh = EIGEN_FAST_MATH,
    HasErf = EIGEN_FAST_MATH,
    HasBlend = 0,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1,
    HasRint = 1,
    HasBessel = 1,
    HasNdtri  = 1
  };
};
#endif

template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };

/* Proper support for integers is only provided by AVX2. In the meantime, we'll
   use SSE instructions and packets to deal with integers.
template<> struct packet_traits<int>    : default_packet_traits
{
  typedef Packet8i type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=8
  };
};
*/

template<> struct unpacket_traits<Packet8f> {
  typedef float     type;
  typedef Packet4f  half;
  typedef Packet8i  integer_packet;
  typedef uint8_t   mask_t;
  enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true};
};
template<> struct unpacket_traits<Packet4d> {
  typedef double type;
  typedef Packet2d half;
  enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
};
template<> struct unpacket_traits<Packet8i> { typedef int    type; typedef Packet4i half; enum {size=8, alignment=Aligned32, vectorizable=false, masked_load_available=false, masked_store_available=false}; };
template<> struct unpacket_traits<Packet8bf> { typedef bfloat16 type; typedef Packet8bf half; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; };

// Helper function for bit packing snippet of low precision comparison.
// It packs the flags from 16x16 to 8x16.
EIGEN_STRONG_INLINE __m128i Pack16To8(Packet8f rf) {
  return _mm_packs_epi32(_mm256_extractf128_si256(_mm256_castps_si256(rf), 0),
                         _mm256_extractf128_si256(_mm256_castps_si256(rf), 1));
}


template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float&  from) { return _mm256_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int&    from) { return _mm256_set1_epi32(from); }

template<> EIGEN_STRONG_INLINE Packet8f pset1frombits<Packet8f>(unsigned int from) { return _mm256_castsi256_ps(pset1<Packet8i>(from)); }
template<> EIGEN_STRONG_INLINE Packet4d pset1frombits<Packet4d>(uint64_t from) { return _mm256_castsi256_pd(_mm256_set1_epi64x(from)); }

template<> EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f& /*a*/) { return _mm256_setzero_ps(); }
template<> EIGEN_STRONG_INLINE Packet4d pzero(const Packet4d& /*a*/) { return _mm256_setzero_pd(); }
template<> EIGEN_STRONG_INLINE Packet8i pzero(const Packet8i& /*a*/) { return _mm256_setzero_si256(); }


template<> EIGEN_STRONG_INLINE Packet8f peven_mask(const Packet8f& /*a*/) { return _mm256_castsi256_ps(_mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1)); }
template<> EIGEN_STRONG_INLINE Packet8i peven_mask(const Packet8i& /*a*/) { return _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); }
template<> EIGEN_STRONG_INLINE Packet4d peven_mask(const Packet4d& /*a*/) { return _mm256_castsi256_pd(_mm256_set_epi32(0, 0, -1, -1, 0, 0, -1, -1)); }

template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float*  from) { return _mm256_broadcast_ss(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }

template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }

template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_add_epi32(a,b);
#else
  __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i psub<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_sub_epi32(a,b);
#else
  __m128i lo = _mm_sub_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  __m128i hi = _mm_sub_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
{
  return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
}
template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
{
  return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
}

template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pmul<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_mullo_epi32(a,b);
#else
  const __m128i lo = _mm_mullo_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  const __m128i hi = _mm_mullo_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by AVX");
  return pset1<Packet8i>(0);
}

#ifdef EIGEN_VECTORIZE_FMA
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
  // Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
  //  and even register spilling with clang>=6.0 (bug 1637).
  // Gcc stupidly generates a vfmadd132ps instruction.
  // So let's enforce it to generate a vfmadd231ps instruction since the most common use
  //  case is to accumulate the result of the product.
  Packet8f res = c;
  __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_ps(a,b,c);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
  // see above
  Packet4d res = c;
  __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_pd(a,b,c);
#endif
}
#endif

template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LT_OQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt_or_nan(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a, b, _CMP_NGE_UQ); }
template<> EIGEN_STRONG_INLINE Packet8f pcmp_eq(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_EQ_OQ); }

template<> EIGEN_STRONG_INLINE Packet4d pcmp_le(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LE_OQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LT_OQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); }
template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); }


template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_cmpeq_epi32(a,b);
#else
  __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
  __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // There appears to be a bug in GCC, by which the optimizer may flip
  // the argument order in calls to _mm_min_ps/_mm_max_ps, so we have to
  // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
  // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
  Packet8f res;
  asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::min.
  return _mm256_min_ps(b,a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet4d res;
  asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::min.
  return _mm256_min_pd(b,a);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet8f res;
  asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::max.
  return _mm256_max_ps(b,a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
  // See pmin above
  Packet4d res;
  asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  // Arguments are swapped to match NaN propagation behavior of std::max.
  return _mm256_max_pd(b,a);
#endif
}

// Add specializations for min/max with prescribed NaN progation.
template<>
EIGEN_STRONG_INLINE Packet8f pmin<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) {
  return pminmax_propagate_numbers(a, b, pmin<Packet8f>);
}
template<>
EIGEN_STRONG_INLINE Packet4d pmin<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) {
  return pminmax_propagate_numbers(a, b, pmin<Packet4d>);
}
template<>
EIGEN_STRONG_INLINE Packet8f pmax<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) {
  return pminmax_propagate_numbers(a, b, pmax<Packet8f>);
}
template<>
EIGEN_STRONG_INLINE Packet4d pmax<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) {
  return pminmax_propagate_numbers(a, b, pmax<Packet4d>);
}
template<>
EIGEN_STRONG_INLINE Packet8f pmin<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) {
  return pminmax_propagate_nan(a, b, pmin<Packet8f>);
}
template<>
EIGEN_STRONG_INLINE Packet4d pmin<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) {
  return pminmax_propagate_nan(a, b, pmin<Packet4d>);
}
template<>
EIGEN_STRONG_INLINE Packet8f pmax<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) {
  return pminmax_propagate_nan(a, b, pmax<Packet8f>);
}
template<>
EIGEN_STRONG_INLINE Packet4d pmax<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) {
  return pminmax_propagate_nan(a, b, pmax<Packet4d>);
}

template<> EIGEN_STRONG_INLINE Packet8f print<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
template<> EIGEN_STRONG_INLINE Packet4d print<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); }

template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); }

template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); }


template<> EIGEN_STRONG_INLINE Packet8i ptrue<Packet8i>(const Packet8i& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqd has lower latency than the more general vcmpps
  return _mm256_cmpeq_epi32(a,a);
#else
  const __m256 b = _mm256_castsi256_ps(a);
  return _mm256_castps_si256(_mm256_cmp_ps(b,b,_CMP_TRUE_UQ));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f ptrue<Packet8f>(const Packet8f& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqd has lower latency than the more general vcmpps
  const __m256i b = _mm256_castps_si256(a);
  return _mm256_castsi256_ps(_mm256_cmpeq_epi32(b,b));
#else
  return _mm256_cmp_ps(a,a,_CMP_TRUE_UQ);
#endif
}

template<> EIGEN_STRONG_INLINE Packet4d ptrue<Packet4d>(const Packet4d& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  // vpcmpeqq has lower latency than the more general vcmppd
  const __m256i b = _mm256_castpd_si256(a);
  return _mm256_castsi256_pd(_mm256_cmpeq_epi64(b,b));
#else
  return _mm256_cmp_pd(a,a,_CMP_TRUE_UQ);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pand<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_and_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i por<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_or_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pxor<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_xor_si256(a,b);
#else
  return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(b,a); }
template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(b,a); }
template<> EIGEN_STRONG_INLINE Packet8i pandnot<Packet8i>(const Packet8i& a, const Packet8i& b) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_andnot_si256(b,a);
#else
  return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a)));
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a)
{
  const Packet8f mask = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x80000000u));
  const Packet8f prev0dot5 = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x3EFFFFFFu));
  return _mm256_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}
template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a)
{
  const Packet4d mask = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x8000000000000000ull));
  const Packet4d prev0dot5 = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x3FDFFFFFFFFFFFFFull));
  return _mm256_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}

template<> EIGEN_STRONG_INLINE Packet8f pselect<Packet8f>(const Packet8f& mask, const Packet8f& a, const Packet8f& b)
{ return _mm256_blendv_ps(b,a,mask); }
template<> EIGEN_STRONG_INLINE Packet4d pselect<Packet4d>(const Packet4d& mask, const Packet4d& a, const Packet4d& b)
{ return _mm256_blendv_pd(b,a,mask); }

template<int N> EIGEN_STRONG_INLINE Packet8i parithmetic_shift_right(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_srai_epi32(a, N);
#else
  __m128i lo = _mm_srai_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_srai_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_right(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_srli_epi32(a, N);
#else
  __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_left(Packet8i a) {
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_slli_epi32(a, N);
#else
  __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(a, 0), N);
  __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(a, 1), N);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float*   from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double*  from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int*     from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from, uint8_t umask) {
  Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
  const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
  mask = por<Packet8i>(mask, bit_mask);
  mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
  EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask);
}

// Loads 4 floats from memory a returns the packet {a0, a0  a1, a1, a2, a2, a3, a3}
template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
{
  // TODO try to find a way to avoid the need of a temporary register
//   Packet8f tmp  = _mm256_castps128_ps256(_mm_loadu_ps(from));
//   tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1);
//   return _mm256_unpacklo_ps(tmp,tmp);

  // _mm256_insertf128_ps is very slow on Haswell, thus:
  Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
  // mimic an "inplace" permutation of the lower 128bits using a blend
  tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
  // then we can perform a consistent permutation on the global register to get everything in shape:
  return  _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
}
// Loads 2 doubles from memory a returns the packet {a0, a0  a1, a1}
template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
{
  Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
  return  _mm256_permute_pd(tmp, 3<<2);
}

// Loads 2 floats from memory a returns the packet {a0, a0  a0, a0, a1, a1, a1, a1}
template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
{
  Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
  return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
}

template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet8f& from, uint8_t umask) {
  Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
  const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
  mask = por<Packet8i>(mask, bit_mask);
  mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
  EIGEN_DEBUG_UNALIGNED_STORE return _mm256_maskstore_ps(to, mask, from);
}

// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride)
{
  return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
                       from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride)
{
  return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
{
  __m128 low = _mm256_extractf128_ps(from, 0);
  to[stride*0] = _mm_cvtss_f32(low);
  to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1));
  to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2));
  to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3));

  __m128 high = _mm256_extractf128_ps(from, 1);
  to[stride*4] = _mm_cvtss_f32(high);
  to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1));
  to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
  to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride)
{
  __m128d low = _mm256_extractf128_pd(from, 0);
  to[stride*0] = _mm_cvtsd_f64(low);
  to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1));
  __m128d high = _mm256_extractf128_pd(from, 1);
  to[stride*2] = _mm_cvtsd_f64(high);
  to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
}

template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
{
  Packet8f pa = pset1<Packet8f>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a)
{
  Packet4d pa = pset1<Packet4d>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
{
  Packet8i pa = pset1<Packet8i>(a);
  pstore(to, pa);
}

#ifndef EIGEN_VECTORIZE_AVX512
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float*   addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*       addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
#endif

template<> EIGEN_STRONG_INLINE float  pfirst<Packet8f>(const Packet8f& a) {
  return _mm_cvtss_f32(_mm256_castps256_ps128(a));
}
template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) {
  return _mm_cvtsd_f64(_mm256_castpd256_pd128(a));
}
template<> EIGEN_STRONG_INLINE int    pfirst<Packet8i>(const Packet8i& a) {
  return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
}


template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a)
{
  __m256 tmp = _mm256_shuffle_ps(a,a,0x1b);
  return _mm256_permute2f128_ps(tmp, tmp, 1);
}
template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
{
   __m256d tmp = _mm256_shuffle_pd(a,a,5);
  return _mm256_permute2f128_pd(tmp, tmp, 1);
  #if 0
  // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd
  // exhibit the same latency/throughput, but it is here for future reference/benchmarking...
  __m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
    return _mm256_permute_pd(swap_halves,5);
  #endif
}

// pabs should be ok
template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
{
  const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
  return _mm256_and_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
{
  const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
  return _mm256_and_pd(a,mask);
}

template<> EIGEN_STRONG_INLINE Packet8f pfrexp<Packet8f>(const Packet8f& a, Packet8f& exponent) {
  return pfrexp_generic(a,exponent);
}

// Extract exponent without existence of Packet4l.
template<>
EIGEN_STRONG_INLINE  
Packet4d pfrexp_generic_get_biased_exponent(const Packet4d& a) {
  const Packet4d cst_exp_mask  = pset1frombits<Packet4d>(static_cast<uint64_t>(0x7ff0000000000000ull));
  __m256i a_expo = _mm256_castpd_si256(pand(a, cst_exp_mask));
#ifdef EIGEN_VECTORIZE_AVX2
  a_expo = _mm256_srli_epi64(a_expo, 52);
  __m128i lo = _mm256_extractf128_si256(a_expo, 0);
  __m128i hi = _mm256_extractf128_si256(a_expo, 1);
#else
  __m128i lo = _mm256_extractf128_si256(a_expo, 0);
  __m128i hi = _mm256_extractf128_si256(a_expo, 1);
  lo = _mm_srli_epi64(lo, 52);
  hi = _mm_srli_epi64(hi, 52);
#endif
  Packet2d exponent_lo = _mm_cvtepi32_pd(vec4i_swizzle1(lo, 0, 2, 1, 3));
  Packet2d exponent_hi = _mm_cvtepi32_pd(vec4i_swizzle1(hi, 0, 2, 1, 3));
  Packet4d exponent = _mm256_insertf128_pd(_mm256_setzero_pd(), exponent_lo, 0);
  exponent = _mm256_insertf128_pd(exponent, exponent_hi, 1);
  return exponent;
}


template<> EIGEN_STRONG_INLINE Packet4d pfrexp<Packet4d>(const Packet4d& a, Packet4d& exponent) {
  return pfrexp_generic(a, exponent);
}

template<> EIGEN_STRONG_INLINE Packet8f pldexp<Packet8f>(const Packet8f& a, const Packet8f& exponent) {
  return pldexp_generic(a, exponent);
}

template<> EIGEN_STRONG_INLINE Packet4d pldexp<Packet4d>(const Packet4d& a, const Packet4d& exponent) {
  // Clamp exponent to [-2099, 2099]
  const Packet4d max_exponent = pset1<Packet4d>(2099.0);
  const Packet4i e = _mm256_cvtpd_epi32(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
  
  // Split 2^e into four factors and multiply.
  const Packet4i bias = pset1<Packet4i>(1023);
  Packet4i b = parithmetic_shift_right<2>(e);  // floor(e/4)
  
  // 2^b
  Packet4i hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3);
  Packet4i lo = _mm_slli_epi64(hi, 52);
  hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52);
  Packet4d c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1));
  Packet4d out = pmul(pmul(pmul(a, c), c), c);  // a * 2^(3b)
  
  // 2^(e - 3b)
  b = psub(psub(psub(e, b), b), b);  // e - 3b
  hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3);
  lo = _mm_slli_epi64(hi, 52);
  hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52);
  c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1));
  out = pmul(out, c); // a * 2^e
  return out;
}

template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a)
{
  return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1))));
}
template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
{
  return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1))));
}

template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4<Packet8f>(const Packet8f& a)
{
  return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
}

template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
{
  Packet8f tmp;
  tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a)
{
  Packet4d tmp;
  tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}

template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}

// not needed yet
// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x)
// {
//   return _mm256_movemask_ps(x)==0xFF;
// }

template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x)
{
  return _mm256_movemask_ps(x)!=0;
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,8>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]);
  __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]);
  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
  __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0));
  __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2));
  __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0));
  __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2));
  kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20);
  kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20);
  kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31);
  kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31);
  kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31);
  kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,4>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);

  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));

  kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31);
  kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4d,4>& kernel) {
  __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
  __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0);
  __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15);
  __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0);

  kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32);
  kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49);
  kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32);
  kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49);
}

template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
  const __m256 zero = _mm256_setzero_ps();
  const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
  const __m256d zero = _mm256_setzero_pd();
  const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
}

// Packet math for Eigen::half

template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; };

template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) {
  return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from));
}

template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet8h>(const Packet8h& from) {
  return numext::bit_cast<Eigen::half>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0)));
}

template<> EIGEN_STRONG_INLINE Packet8h pload<Packet8h>(const Eigen::half* from) {
  return _mm_load_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE Packet8h ploadu<Packet8h>(const Eigen::half* from) {
  return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet8h& from) {
  _mm_store_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet8h& from) {
  _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE Packet8h
ploaddup<Packet8h>(const Eigen::half*  from) {
  const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
  const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
  const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]);
  const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]);
  return _mm_set_epi16(d, d, c, c, b, b, a, a);
}

template<> EIGEN_STRONG_INLINE Packet8h
ploadquad<Packet8h>(const Eigen::half* from) {
  const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
  const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
  return _mm_set_epi16(b, b, b, b, a, a, a, a);
}

template<> EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h& a) {
 return _mm_cmpeq_epi32(a, a);
}

template <>
EIGEN_STRONG_INLINE Packet8h pabs(const Packet8h& a) {
  const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
  return _mm_andnot_si128(sign_mask, a);
}

EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) {
#ifdef EIGEN_HAS_FP16_C
  return _mm256_cvtph_ps(a);
#else
  EIGEN_ALIGN32 Eigen::half aux[8];
  pstore(aux, a);
  float f0(aux[0]);
  float f1(aux[1]);
  float f2(aux[2]);
  float f3(aux[3]);
  float f4(aux[4]);
  float f5(aux[5]);
  float f6(aux[6]);
  float f7(aux[7]);

  return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0);
#endif
}

EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) {
#ifdef EIGEN_HAS_FP16_C
  return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
#else
  EIGEN_ALIGN32 float aux[8];
  pstore(aux, a);
  const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[0]));
  const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[1]));
  const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[2]));
  const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[3]));
  const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[4]));
  const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[5]));
  const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[6]));
  const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[7]));
  return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
#endif
}

template <>
EIGEN_STRONG_INLINE Packet8h pmin<Packet8h>(const Packet8h& a,
                                            const Packet8h& b) {
  return float2half(pmin<Packet8f>(half2float(a), half2float(b)));
}

template <>
EIGEN_STRONG_INLINE Packet8h pmax<Packet8h>(const Packet8h& a,
                                            const Packet8h& b) {
  return float2half(pmax<Packet8f>(half2float(a), half2float(b)));
}

template <>
EIGEN_STRONG_INLINE Packet8h plset<Packet8h>(const half& a) {
  return float2half(plset<Packet8f>(static_cast<float>(a)));
}

template<> EIGEN_STRONG_INLINE Packet8h por(const Packet8h& a,const Packet8h& b) {
  // in some cases Packet4i is a wrapper around __m128i, so we either need to
  // cast to Packet4i to directly call the intrinsics as below:
  return _mm_or_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h& a,const Packet8h& b) {
  return _mm_xor_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pand(const Packet8h& a,const Packet8h& b) {
  return _mm_and_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h& a,const Packet8h& b) {
  return _mm_andnot_si128(b,a);
}

template<> EIGEN_STRONG_INLINE Packet8h pselect(const Packet8h& mask, const Packet8h& a, const Packet8h& b) {
  return _mm_blendv_epi8(b, a, mask);
}

template<> EIGEN_STRONG_INLINE Packet8h pround<Packet8h>(const Packet8h& a) {
  return float2half(pround<Packet8f>(half2float(a)));
}

template<> EIGEN_STRONG_INLINE Packet8h print<Packet8h>(const Packet8h& a) {
  return float2half(print<Packet8f>(half2float(a)));
}

template<> EIGEN_STRONG_INLINE Packet8h pceil<Packet8h>(const Packet8h& a) {
  return float2half(pceil<Packet8f>(half2float(a)));
}

template<> EIGEN_STRONG_INLINE Packet8h pfloor<Packet8h>(const Packet8h& a) {
  return float2half(pfloor<Packet8f>(half2float(a)));
}

template<> EIGEN_STRONG_INLINE Packet8h pcmp_eq(const Packet8h& a,const Packet8h& b) {
  return Pack16To8(pcmp_eq(half2float(a), half2float(b)));
}

template<> EIGEN_STRONG_INLINE Packet8h pcmp_le(const Packet8h& a,const Packet8h& b) {
  return Pack16To8(pcmp_le(half2float(a), half2float(b)));
}

template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt(const Packet8h& a,const Packet8h& b) {
  return Pack16To8(pcmp_lt(half2float(a), half2float(b)));
}

template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt_or_nan(const Packet8h& a,const Packet8h& b) {
  return Pack16To8(pcmp_lt_or_nan(half2float(a), half2float(b)));
}

template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) {
  Packet8h sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
  return _mm_xor_si128(a, sign_mask);
}

template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = padd(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h psub<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = psub(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pmul<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = pmul(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pdiv<Packet8h>(const Packet8h& a, const Packet8h& b) {
  Packet8f af = half2float(a);
  Packet8f bf = half2float(b);
  Packet8f rf = pdiv(af, bf);
  return float2half(rf);
}

template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride)
{
  const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]);
  const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]);
  const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]);
  const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]);
  const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]);
  const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]);
  const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]);
  const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]);
  return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
}

template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half* to, const Packet8h& from, Index stride)
{
  EIGEN_ALIGN32 Eigen::half aux[8];
  pstore(aux, from);
  to[stride*0] = aux[0];
  to[stride*1] = aux[1];
  to[stride*2] = aux[2];
  to[stride*3] = aux[3];
  to[stride*4] = aux[4];
  to[stride*5] = aux[5];
  to[stride*6] = aux[6];
  to[stride*7] = aux[7];
}

template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_max<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_min<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_min<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Eigen::half predux_mul<Packet8h>(const Packet8h& a) {
  Packet8f af = half2float(a);
  float reduced = predux_mul<Packet8f>(af);
  return Eigen::half(reduced);
}

template<> EIGEN_STRONG_INLINE Packet8h preverse(const Packet8h& a)
{
  __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1);
  return _mm_shuffle_epi8(a,m);
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,8>& kernel) {
  __m128i a = kernel.packet[0];
  __m128i b = kernel.packet[1];
  __m128i c = kernel.packet[2];
  __m128i d = kernel.packet[3];
  __m128i e = kernel.packet[4];
  __m128i f = kernel.packet[5];
  __m128i g = kernel.packet[6];
  __m128i h = kernel.packet[7];

  __m128i a03b03 = _mm_unpacklo_epi16(a, b);
  __m128i c03d03 = _mm_unpacklo_epi16(c, d);
  __m128i e03f03 = _mm_unpacklo_epi16(e, f);
  __m128i g03h03 = _mm_unpacklo_epi16(g, h);
  __m128i a47b47 = _mm_unpackhi_epi16(a, b);
  __m128i c47d47 = _mm_unpackhi_epi16(c, d);
  __m128i e47f47 = _mm_unpackhi_epi16(e, f);
  __m128i g47h47 = _mm_unpackhi_epi16(g, h);

  __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
  __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
  __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
  __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
  __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
  __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
  __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
  __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);

  __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
  __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
  __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
  __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
  __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
  __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
  __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
  __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);

  kernel.packet[0] = a0b0c0d0e0f0g0h0;
  kernel.packet[1] = a1b1c1d1e1f1g1h1;
  kernel.packet[2] = a2b2c2d2e2f2g2h2;
  kernel.packet[3] = a3b3c3d3e3f3g3h3;
  kernel.packet[4] = a4b4c4d4e4f4g4h4;
  kernel.packet[5] = a5b5c5d5e5f5g5h5;
  kernel.packet[6] = a6b6c6d6e6f6g6h6;
  kernel.packet[7] = a7b7c7d7e7f7g7h7;
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,4>& kernel) {
  EIGEN_ALIGN32 Eigen::half in[4][8];
  pstore<Eigen::half>(in[0], kernel.packet[0]);
  pstore<Eigen::half>(in[1], kernel.packet[1]);
  pstore<Eigen::half>(in[2], kernel.packet[2]);
  pstore<Eigen::half>(in[3], kernel.packet[3]);

  EIGEN_ALIGN32 Eigen::half out[4][8];

  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      out[i][j] = in[j][2*i];
    }
    for (int j = 0; j < 4; ++j) {
      out[i][j+4] = in[j][2*i+1];
    }
  }

  kernel.packet[0] = pload<Packet8h>(out[0]);
  kernel.packet[1] = pload<Packet8h>(out[1]);
  kernel.packet[2] = pload<Packet8h>(out[2]);
  kernel.packet[3] = pload<Packet8h>(out[3]);
}

// BFloat16 implementation.

EIGEN_STRONG_INLINE Packet8f Bf16ToF32(const Packet8bf& a) {
#ifdef EIGEN_VECTORIZE_AVX2
  __m256i extend = _mm256_cvtepu16_epi32(a);
  return _mm256_castsi256_ps(_mm256_slli_epi32(extend, 16));
#else
  __m128i lo = _mm_cvtepu16_epi32(a);
  __m128i hi = _mm_cvtepu16_epi32(_mm_srli_si128(a, 8));
  __m128i lo_shift = _mm_slli_epi32(lo, 16);
  __m128i hi_shift = _mm_slli_epi32(hi, 16);
  return _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo_shift), hi_shift, 1));
#endif
}

// Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm.
EIGEN_STRONG_INLINE Packet8bf F32ToBf16(const Packet8f& a) {
  Packet8bf r;

  // Flush input denormals value to zero with hardware capability.
  _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
  __m256 flush = _mm256_and_ps(a, a);
  _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_OFF);

  __m256i input = _mm256_castps_si256(flush);

#ifdef EIGEN_VECTORIZE_AVX2
  // uint32_t lsb = (input >> 16);
  __m256i t = _mm256_srli_epi32(input, 16);
  // uint32_t lsb = lsb & 1;
  t = _mm256_and_si256(t, _mm256_set1_epi32(1));
  // uint32_t rounding_bias = 0x7fff + lsb;
  t = _mm256_add_epi32(t, _mm256_set1_epi32(0x7fff));
  // input += rounding_bias;
  t = _mm256_add_epi32(t, input);
  // input = input >> 16;
  t = _mm256_srli_epi32(t, 16);
  // Check NaN before converting back to bf16
  __m256 mask = _mm256_cmp_ps(flush, flush, _CMP_ORD_Q);
  __m256i nan = _mm256_set1_epi32(0x7fc0);
  t = _mm256_blendv_epi8(nan, t, _mm256_castps_si256(mask));
  // output = numext::bit_cast<uint16_t>(input);
  return _mm_packus_epi32(_mm256_extractf128_si256(t, 0),
                         _mm256_extractf128_si256(t, 1));
#else
  // uint32_t lsb = (input >> 16);
  __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(input, 0), 16);
  __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(input, 1), 16);
  // uint32_t lsb = lsb & 1;
  lo = _mm_and_si128(lo, _mm_set1_epi32(1));
  hi = _mm_and_si128(hi, _mm_set1_epi32(1));
  // uint32_t rounding_bias = 0x7fff + lsb;
  lo = _mm_add_epi32(lo, _mm_set1_epi32(0x7fff));
  hi = _mm_add_epi32(hi, _mm_set1_epi32(0x7fff));
  // input += rounding_bias;
  lo = _mm_add_epi32(lo, _mm256_extractf128_si256(input, 0));
  hi = _mm_add_epi32(hi, _mm256_extractf128_si256(input, 1));
  // input = input >> 16;
  lo = _mm_srli_epi32(lo, 16);
  hi = _mm_srli_epi32(hi, 16);
  // Check NaN before converting back to bf16
  __m256 mask = _mm256_cmp_ps(flush, flush, _CMP_ORD_Q);
  __m128i nan = _mm_set1_epi32(0x7fc0);
  lo = _mm_blendv_epi8(nan, lo, _mm_castps_si128(_mm256_castps256_ps128(mask)));
  hi = _mm_blendv_epi8(nan, hi, _mm_castps_si128(_mm256_extractf128_ps(mask, 1)));
  // output = numext::bit_cast<uint16_t>(input);
  return _mm_packus_epi32(lo, hi);
#endif
}

template<> EIGEN_STRONG_INLINE Packet8bf pset1<Packet8bf>(const bfloat16& from) {
  return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from));
}

template<> EIGEN_STRONG_INLINE bfloat16 pfirst<Packet8bf>(const Packet8bf& from) {
  return numext::bit_cast<bfloat16>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pload<Packet8bf>(const bfloat16* from) {
  return _mm_load_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE Packet8bf ploadu<Packet8bf>(const bfloat16* from) {
  return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}

template<> EIGEN_STRONG_INLINE void pstore<bfloat16>(bfloat16* to, const Packet8bf& from) {
  _mm_store_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE void pstoreu<bfloat16>(bfloat16* to, const Packet8bf& from) {
  _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from);
}

template<> EIGEN_STRONG_INLINE Packet8bf
ploaddup<Packet8bf>(const bfloat16* from) {
  const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
  const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
  const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]);
  const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]);
  return _mm_set_epi16(d, d, c, c, b, b, a, a);
}

template<> EIGEN_STRONG_INLINE Packet8bf
ploadquad<Packet8bf>(const bfloat16* from) {
  const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]);
  const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]);
  return _mm_set_epi16(b, b, b, b, a, a, a, a);
}

template<> EIGEN_STRONG_INLINE Packet8bf ptrue(const Packet8bf& a) {
 return _mm_cmpeq_epi32(a, a);
}

template <>
EIGEN_STRONG_INLINE Packet8bf pabs(const Packet8bf& a) {
  const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
  return _mm_andnot_si128(sign_mask, a);
}

template <>
EIGEN_STRONG_INLINE Packet8bf pmin<Packet8bf>(const Packet8bf& a,
                                                const Packet8bf& b) {
  return F32ToBf16(pmin<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}

template <>
EIGEN_STRONG_INLINE Packet8bf pmax<Packet8bf>(const Packet8bf& a,
                                                const Packet8bf& b) {
  return F32ToBf16(pmax<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}

template <>
EIGEN_STRONG_INLINE Packet8bf plset<Packet8bf>(const bfloat16& a) {
  return F32ToBf16(plset<Packet8f>(static_cast<float>(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf por(const Packet8bf& a,const Packet8bf& b) {
  return _mm_or_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8bf pxor(const Packet8bf& a,const Packet8bf& b) {
  return _mm_xor_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8bf pand(const Packet8bf& a,const Packet8bf& b) {
  return _mm_and_si128(a,b);
}
template<> EIGEN_STRONG_INLINE Packet8bf pandnot(const Packet8bf& a,const Packet8bf& b) {
  return _mm_andnot_si128(b,a);
}

template<> EIGEN_STRONG_INLINE Packet8bf pselect(const Packet8bf& mask, const Packet8bf& a, const Packet8bf& b) {
  return _mm_blendv_epi8(b, a, mask);
}

template<> EIGEN_STRONG_INLINE Packet8bf pround<Packet8bf>(const Packet8bf& a)
{
  return F32ToBf16(pround<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf print<Packet8bf>(const Packet8bf& a) {
  return F32ToBf16(print<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pceil<Packet8bf>(const Packet8bf& a) {
  return F32ToBf16(pceil<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pfloor<Packet8bf>(const Packet8bf& a) {
  return F32ToBf16(pfloor<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pcmp_eq(const Packet8bf& a,const Packet8bf& b) {
  return Pack16To8(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pcmp_le(const Packet8bf& a,const Packet8bf& b) {
  return Pack16To8(pcmp_le(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt(const Packet8bf& a,const Packet8bf& b) {
  return Pack16To8(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt_or_nan(const Packet8bf& a,const Packet8bf& b) {
  return Pack16To8(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pconj(const Packet8bf& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8bf pnegate(const Packet8bf& a) {
  Packet8bf sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000));
  return _mm_xor_si128(a, sign_mask);
}

template<> EIGEN_STRONG_INLINE Packet8bf padd<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
  return F32ToBf16(padd<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf psub<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
  return F32ToBf16(psub<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pmul<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
  return F32ToBf16(pmul<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}

template<> EIGEN_STRONG_INLINE Packet8bf pdiv<Packet8bf>(const Packet8bf& a, const Packet8bf& b) {
  return F32ToBf16(pdiv<Packet8f>(Bf16ToF32(a), Bf16ToF32(b)));
}


template<> EIGEN_STRONG_INLINE Packet8bf pgather<bfloat16, Packet8bf>(const bfloat16* from, Index stride)
{
  const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]);
  const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]);
  const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]);
  const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]);
  const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]);
  const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]);
  const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]);
  const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]);
  return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
}

template<> EIGEN_STRONG_INLINE void pscatter<bfloat16, Packet8bf>(bfloat16* to, const Packet8bf& from, Index stride)
{
  EIGEN_ALIGN32 bfloat16 aux[8];
  pstore(aux, from);
  to[stride*0] = aux[0];
  to[stride*1] = aux[1];
  to[stride*2] = aux[2];
  to[stride*3] = aux[3];
  to[stride*4] = aux[4];
  to[stride*5] = aux[5];
  to[stride*6] = aux[6];
  to[stride*7] = aux[7];
}

template<> EIGEN_STRONG_INLINE bfloat16 predux<Packet8bf>(const Packet8bf& a) {
  return static_cast<bfloat16>(predux<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE bfloat16 predux_max<Packet8bf>(const Packet8bf& a) {
  return static_cast<bfloat16>(predux_max<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE bfloat16 predux_min<Packet8bf>(const Packet8bf& a) {
  return static_cast<bfloat16>(predux_min<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE bfloat16 predux_mul<Packet8bf>(const Packet8bf& a) {
  return static_cast<bfloat16>(predux_mul<Packet8f>(Bf16ToF32(a)));
}

template<> EIGEN_STRONG_INLINE Packet8bf preverse(const Packet8bf& a)
{
  __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1);
  return _mm_shuffle_epi8(a,m);
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8bf,8>& kernel) {
  __m128i a = kernel.packet[0];
  __m128i b = kernel.packet[1];
  __m128i c = kernel.packet[2];
  __m128i d = kernel.packet[3];
  __m128i e = kernel.packet[4];
  __m128i f = kernel.packet[5];
  __m128i g = kernel.packet[6];
  __m128i h = kernel.packet[7];

  __m128i a03b03 = _mm_unpacklo_epi16(a, b);
  __m128i c03d03 = _mm_unpacklo_epi16(c, d);
  __m128i e03f03 = _mm_unpacklo_epi16(e, f);
  __m128i g03h03 = _mm_unpacklo_epi16(g, h);
  __m128i a47b47 = _mm_unpackhi_epi16(a, b);
  __m128i c47d47 = _mm_unpackhi_epi16(c, d);
  __m128i e47f47 = _mm_unpackhi_epi16(e, f);
  __m128i g47h47 = _mm_unpackhi_epi16(g, h);

  __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
  __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
  __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
  __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
  __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
  __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
  __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
  __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);

  kernel.packet[0] = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
  kernel.packet[1] = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
  kernel.packet[2] = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
  kernel.packet[3] = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
  kernel.packet[4] = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
  kernel.packet[5] = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
  kernel.packet[6] = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
  kernel.packet[7] = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);
}

EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8bf,4>& kernel) {
  __m128i a = kernel.packet[0];
  __m128i b = kernel.packet[1];
  __m128i c = kernel.packet[2];
  __m128i d = kernel.packet[3];

  __m128i ab_03 = _mm_unpacklo_epi16(a, b);
  __m128i cd_03 = _mm_unpacklo_epi16(c, d);
  __m128i ab_47 = _mm_unpackhi_epi16(a, b);
  __m128i cd_47 = _mm_unpackhi_epi16(c, d);

  kernel.packet[0] = _mm_unpacklo_epi32(ab_03, cd_03);
  kernel.packet[1] = _mm_unpackhi_epi32(ab_03, cd_03);
  kernel.packet[2] = _mm_unpacklo_epi32(ab_47, cd_47);
  kernel.packet[3] = _mm_unpackhi_epi32(ab_47, cd_47);
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PACKET_MATH_AVX_H