aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/AVX/Complex.h
blob: 0491be9927ba16ed7b9efcff41b0fe26372ff774 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPLEX_AVX_H
#define EIGEN_COMPLEX_AVX_H

namespace Eigen {

namespace internal {

//---------- float ----------
struct Packet4cf
{
  EIGEN_STRONG_INLINE Packet4cf() {}
  EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {}
  __m256  v;
};

#ifndef EIGEN_VECTORIZE_AVX512
template<> struct packet_traits<std::complex<float> >  : default_packet_traits
{
  typedef Packet4cf type;
  typedef Packet2cf half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 4,
    HasHalfPacket = 1,

    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasSqrt   = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasSetLinear = 0
  };
};
#endif

template<> struct unpacket_traits<Packet4cf> {
  typedef std::complex<float> type;
  typedef Packet2cf half;
  typedef Packet8f as_real;
  enum {
    size=4,
    alignment=Aligned32,
    vectorizable=true,
    masked_load_available=false,
    masked_store_available=false
  };
};

template<> EIGEN_STRONG_INLINE Packet4cf padd<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet4cf psub<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a)
{
  return Packet4cf(pnegate(a.v));
}
template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a)
{
  const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000));
  return Packet4cf(_mm256_xor_ps(a.v,mask));
}

template<> EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
{
  __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v);
  __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1)));
  __m256 result = _mm256_addsub_ps(tmp1, tmp2);
  return Packet4cf(result);
}

template <>
EIGEN_STRONG_INLINE Packet4cf pcmp_eq(const Packet4cf& a, const Packet4cf& b) {
  __m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ);
  return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1)));
}

template<> EIGEN_STRONG_INLINE Packet4cf ptrue<Packet4cf>(const Packet4cf& a) { return Packet4cf(ptrue(Packet8f(a.v))); }
template<> EIGEN_STRONG_INLINE Packet4cf pand   <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet4cf por    <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet4cf pxor   <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(b.v,a.v)); }

template<> EIGEN_STRONG_INLINE Packet4cf pload <Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload<Packet8f>(&numext::real_ref(*from))); }
template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from))); }


template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from)
{
  return Packet4cf(_mm256_castpd_ps(_mm256_broadcast_sd((const double*)(const void*)&from)));
}

template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from)
{
  // FIXME The following might be optimized using _mm256_movedup_pd
  Packet2cf a = ploaddup<Packet2cf>(from);
  Packet2cf b = ploaddup<Packet2cf>(from+1);
  return  Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1));
}

template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }

template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, Index stride)
{
  return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
                                 std::imag(from[2*stride]), std::real(from[2*stride]),
                                 std::imag(from[1*stride]), std::real(from[1*stride]),
                                 std::imag(from[0*stride]), std::real(from[0*stride])));
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, Index stride)
{
  __m128 low = _mm256_extractf128_ps(from.v, 0);
  to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
                                     _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)));
  to[stride*1] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)),
                                     _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)));

  __m128 high = _mm256_extractf128_ps(from.v, 1);
  to[stride*2] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)),
                                     _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)));
  to[stride*3] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)),
                                     _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)));

}

template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet4cf>(const Packet4cf& a)
{
  return pfirst(Packet2cf(_mm256_castps256_ps128(a.v)));
}

template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) {
  __m128 low  = _mm256_extractf128_ps(a.v, 0);
  __m128 high = _mm256_extractf128_ps(a.v, 1);
  __m128d lowd  = _mm_castps_pd(low);
  __m128d highd = _mm_castps_pd(high);
  low  = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1));
  high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1));
  __m256 result = _mm256_setzero_ps();
  result = _mm256_insertf128_ps(result, low, 1);
  result = _mm256_insertf128_ps(result, high, 0);
  return Packet4cf(result);
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(const Packet4cf& a)
{
  return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)),
                     Packet2cf(_mm256_extractf128_ps(a.v,1))));
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const Packet4cf& a)
{
  return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)),
                         Packet2cf(_mm256_extractf128_ps(a.v, 1))));
}


EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f)

template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
{
  return pdiv_complex(a, b);
}

template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x)
{
  return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1)));
}

//---------- double ----------
struct Packet2cd
{
  EIGEN_STRONG_INLINE Packet2cd() {}
  EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {}
  __m256d  v;
};

#ifndef EIGEN_VECTORIZE_AVX512
template<> struct packet_traits<std::complex<double> >  : default_packet_traits
{
  typedef Packet2cd type;
  typedef Packet1cd half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 0,
    size = 2,
    HasHalfPacket = 1,

    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasSqrt   = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasSetLinear = 0
  };
};
#endif

template<> struct unpacket_traits<Packet2cd> {
  typedef std::complex<double> type;
  typedef Packet1cd half;
  typedef Packet4d as_real;
  enum {
    size=2,
    alignment=Aligned32,
    vectorizable=true,
    masked_load_available=false,
    masked_store_available=false
  };
};

template<> EIGEN_STRONG_INLINE Packet2cd padd<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd psub<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a)
{
  const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0));
  return Packet2cd(_mm256_xor_pd(a.v,mask));
}

template<> EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
{
  __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0);
  __m256d even = _mm256_mul_pd(tmp1, b.v);
  __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF);
  __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5);
  __m256d odd  = _mm256_mul_pd(tmp2, tmp3);
  return Packet2cd(_mm256_addsub_pd(even, odd));
}

template <>
EIGEN_STRONG_INLINE Packet2cd pcmp_eq(const Packet2cd& a, const Packet2cd& b) {
  __m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ);
  return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5)));
}

template<> EIGEN_STRONG_INLINE Packet2cd ptrue<Packet2cd>(const Packet2cd& a) { return Packet2cd(ptrue(Packet4d(a.v))); }
template<> EIGEN_STRONG_INLINE Packet2cd pand   <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd por    <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd pxor   <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(b.v,a.v)); }

template<> EIGEN_STRONG_INLINE Packet2cd pload <Packet2cd>(const std::complex<double>* from)
{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload<Packet4d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(const std::complex<double>* from)
{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu<Packet4d>((const double*)from)); }

template<> EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(const std::complex<double>& from)
{
  // in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though)
//   return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from));
    return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from));
}

template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<double>* from) { return pset1<Packet2cd>(*from); }

template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> *   to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> *   to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }

template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, Index stride)
{
  return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
				 std::imag(from[0*stride]), std::real(from[0*stride])));
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, Index stride)
{
  __m128d low = _mm256_extractf128_pd(from.v, 0);
  to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
  __m128d high = _mm256_extractf128_pd(from.v, 1);
  to[stride*1] = std::complex<double>(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)));
}

template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(const Packet2cd& a)
{
  __m128d low = _mm256_extractf128_pd(a.v, 0);
  EIGEN_ALIGN16 double res[2];
  _mm_store_pd(res, low);
  return std::complex<double>(res[0],res[1]);
}

template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) {
  __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1);
  return Packet2cd(result);
}

template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(const Packet2cd& a)
{
  return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)),
                     Packet1cd(_mm256_extractf128_pd(a.v,1))));
}

template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(const Packet2cd& a)
{
  return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)),
                     Packet1cd(_mm256_extractf128_pd(a.v,1))));
}

EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d)

template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
{
  return pdiv_complex(a, b);
}

template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x)
{
  return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5));
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4cf,4>& kernel) {
  __m256d P0 = _mm256_castps_pd(kernel.packet[0].v);
  __m256d P1 = _mm256_castps_pd(kernel.packet[1].v);
  __m256d P2 = _mm256_castps_pd(kernel.packet[2].v);
  __m256d P3 = _mm256_castps_pd(kernel.packet[3].v);

  __m256d T0 = _mm256_shuffle_pd(P0, P1, 15);
  __m256d T1 = _mm256_shuffle_pd(P0, P1, 0);
  __m256d T2 = _mm256_shuffle_pd(P2, P3, 15);
  __m256d T3 = _mm256_shuffle_pd(P2, P3, 0);

  kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32));
  kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49));
  kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32));
  kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49));
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2cd,2>& kernel) {
  __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4));
  kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4));
 kernel.packet[0].v = tmp;
}

template<> EIGEN_STRONG_INLINE Packet2cd psqrt<Packet2cd>(const Packet2cd& a) {
  return psqrt_complex<Packet2cd>(a);
}

template<> EIGEN_STRONG_INLINE Packet4cf psqrt<Packet4cf>(const Packet4cf& a) {
  return psqrt_complex<Packet4cf>(a);
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_COMPLEX_AVX_H