1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H
/** \nonstableyet
* \class TriangularBase
*
* \brief Expression of a triangular matrix extracted from a given matrix
*
* \param MatrixType the type of the object in which we are taking the triangular part
* \param Mode the kind of triangular matrix expression to construct. Can be UpperTriangular,
* LowerTriangular, UpperSelfadjoint, or LowerSelfadjoint. This is in fact a bit field;
* it must have either UpperBit or LowerBit, and additionnaly it may have either
* TraingularBit or SelfadjointBit.
*
* This class represents an expression of the upper or lower triangular part of
* a square matrix, possibly with a further assumption on the diagonal. It is the return type
* of MatrixBase::part() and most of the time this is the only way it is used.
*
* \sa MatrixBase::part()
*/
template<typename Derived> class TriangularBase : public AnyMatrixBase<Derived>
{
public:
enum {
Mode = ei_traits<Derived>::Mode,
CoeffReadCost = ei_traits<Derived>::CoeffReadCost,
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime
};
typedef typename ei_traits<Derived>::Scalar Scalar;
inline TriangularBase() { ei_assert(ei_are_flags_consistent<Mode>::ret); }
inline int rows() const { return derived().rows(); }
inline int cols() const { return derived().cols(); }
inline int stride() const { return derived().stride(); }
inline Scalar coeff(int row, int col) const { return derived().coeff(row,col); }
inline Scalar& coeffRef(int row, int col) { return derived().coeffRef(row,col); }
/** \see MatrixBase::copyCoeff(row,col)
*/
template<typename Other>
EIGEN_STRONG_INLINE void copyCoeff(int row, int col, Other& other)
{
derived().coeffRef(row, col) = other.coeff(row, col);
}
inline Scalar operator()(int row, int col) const
{
check_coordinates(row, col);
return coeff(row,col);
}
inline Scalar& operator()(int row, int col)
{
check_coordinates(row, col);
return coeffRef(row,col);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived> &other) const;
template<typename DenseDerived>
void evalToLazy(MatrixBase<DenseDerived> &other) const;
protected:
void check_coordinates(int row, int col)
{
ei_assert(col>0 && col<cols() && row>0 && row<rows());
ei_assert( (Mode==UpperTriangular && col>=row)
|| (Mode==LowerTriangular && col<=row)
|| (Mode==StrictlyUpperTriangular && col>row)
|| (Mode==StrictlyLowerTriangular && col<row));
}
void check_coordinates_internal(int row, int col)
{
#ifdef EIGEN_INTERNAL_DEBUGGING
check_coordinates(row, col);
#endif
}
};
/** \class TriangularView
* \nonstableyet
*
* \brief Expression of a triangular part of a dense matrix
*
* \param MatrixType the type of the dense matrix storing the coefficients
*
* This class is an expression of a triangular part of a matrix with given dense
* storage of the coefficients. It is the return type of MatrixBase::triangularPart()
* and most of the time this is the only way that it is used.
*
* \sa class TriangularBase, MatrixBase::triangularPart(), class DiagonalWrapper
*/
template<typename MatrixType, unsigned int _Mode>
struct ei_traits<TriangularView<MatrixType, _Mode> > : ei_traits<MatrixType>
{
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
typedef MatrixType ExpressionType;
enum {
Mode = _Mode,
Flags = (_MatrixTypeNested::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct TriangularProduct;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
public:
typedef TriangularBase<TriangularView> Base;
typedef typename ei_traits<TriangularView>::Scalar Scalar;
typedef _MatrixType MatrixType;
typedef typename MatrixType::PlainMatrixType PlainMatrixType;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename ei_cleantype<MatrixTypeNested>::type _MatrixTypeNested;
enum {
Mode = _Mode,
TransposeMode = (Mode & UpperTriangularBit ? LowerTriangularBit : 0)
| (Mode & LowerTriangularBit ? UpperTriangularBit : 0)
| (Mode & (ZeroDiagBit | UnitDiagBit))
};
inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
{ ei_assert(ei_are_flags_consistent<Mode>::ret); }
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
inline int stride() const { return m_matrix.stride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other> TriangularView& operator+=(const Other& other) { return *this = m_matrix + other; }
/** \sa MatrixBase::operator-=() */
template<typename Other> TriangularView& operator-=(const Other& other) { return *this = m_matrix - other; }
/** \sa MatrixBase::operator*=() */
TriangularView& operator*=(const typename ei_traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
/** \sa MatrixBase::operator/=() */
TriangularView& operator/=(const typename ei_traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
/** \sa MatrixBase::fill() */
void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
TriangularView& setConstant(const Scalar& value)
{ return *this = MatrixType::Constant(rows(), cols(), value); }
/** \sa MatrixBase::setZero() */
TriangularView& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
TriangularView& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar coeff(int row, int col) const
{
Base::check_coordinates_internal(row, col);
return m_matrix.coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar& coeffRef(int row, int col)
{
Base::check_coordinates_internal(row, col);
return m_matrix.const_cast_derived().coeffRef(row, col);
}
/** \internal */
const MatrixType& _expression() const { return m_matrix; }
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template<typename OtherDerived>
TriangularView& operator=(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
TriangularView& operator=(const MatrixBase<OtherDerived>& other);
TriangularView& operator=(const TriangularView& other)
{ return *this = other._expression(); }
template<typename OtherDerived>
void lazyAssign(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
void lazyAssign(const MatrixBase<OtherDerived>& other);
/** \sa MatrixBase::adjoint() */
inline TriangularView<NestByValue<typename MatrixType::AdjointReturnType>,TransposeMode> adjoint()
{ return m_matrix.adjoint().nestByValue(); }
/** \sa MatrixBase::adjoint() const */
inline const TriangularView<NestByValue<typename MatrixType::AdjointReturnType>,TransposeMode> adjoint() const
{ return m_matrix.adjoint().nestByValue(); }
/** \sa MatrixBase::transpose() */
inline TriangularView<NestByValue<Transpose<MatrixType> >,TransposeMode> transpose()
{ return m_matrix.transpose().nestByValue(); }
/** \sa MatrixBase::transpose() const */
inline const TriangularView<NestByValue<Transpose<MatrixType> >,TransposeMode> transpose() const
{ return m_matrix.transpose().nestByValue(); }
PlainMatrixType toDense() const
{
PlainMatrixType res(rows(), cols());
res = *this;
return res;
}
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
TriangularProduct<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return TriangularProduct
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
{
return TriangularProduct
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
(lhs.derived(),rhs.m_matrix);
}
template<int Side, typename OtherDerived>
typename ei_plain_matrix_type_column_major<OtherDerived>::type
solve(const MatrixBase<OtherDerived>& other) const;
template<int Side, typename OtherDerived>
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
typename ei_plain_matrix_type_column_major<OtherDerived>::type
solve(const MatrixBase<OtherDerived>& other) const
{ return solve<OnTheLeft>(other); }
template<typename OtherDerived>
void solveInPlace(const MatrixBase<OtherDerived>& other) const
{ return solveInPlace<OnTheLeft>(other); }
const SelfAdjointView<_MatrixTypeNested,Mode> selfadjointView() const
{
EIGEN_STATIC_ASSERT((Mode&UnitDiagBit)==0,PROGRAMMING_ERROR);
return SelfAdjointView<_MatrixTypeNested,Mode>(m_matrix);
}
SelfAdjointView<_MatrixTypeNested,Mode> selfadjointView()
{
EIGEN_STATIC_ASSERT((Mode&UnitDiagBit)==0,PROGRAMMING_ERROR);
return SelfAdjointView<_MatrixTypeNested,Mode>(m_matrix);
}
template<typename OtherDerived>
void swap(const TriangularBase<OtherDerived>& other)
{
TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
}
template<typename OtherDerived>
void swap(const MatrixBase<OtherDerived>& other)
{
TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
}
protected:
const MatrixTypeNested m_matrix;
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
struct ei_triangular_assignment_selector
{
enum {
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
};
inline static void run(Derived1 &dst, const Derived2 &src)
{
ei_triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
ei_assert( Mode == UpperTriangular || Mode == LowerTriangular
|| Mode == StrictlyUpperTriangular || Mode == StrictlyLowerTriangular
|| Mode == UnitUpperTriangular || Mode == UnitLowerTriangular);
if((Mode == UpperTriangular && row <= col)
|| (Mode == LowerTriangular && row >= col)
|| (Mode == StrictlyUpperTriangular && row < col)
|| (Mode == StrictlyLowerTriangular && row > col)
|| (Mode == UnitUpperTriangular && row < col)
|| (Mode == UnitLowerTriangular && row > col))
dst.copyCoeff(row, col, src);
else if(ClearOpposite)
{
if (Mode&UnitDiagBit && row==col)
dst.coeffRef(row, col) = 1;
else
dst.coeffRef(row, col) = 0;
}
}
};
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, Mode, 1, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
if(Mode&UnitDiagBit)
{
if(ClearOpposite)
dst.coeffRef(0, 0) = 1;
}
else if(!(Mode & ZeroDiagBit))
dst.copyCoeff(0, 0, src);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
{
inline static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, UpperTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = 0; i <= j; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(int i = j+1; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, LowerTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = j; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(int i = 0; i < j; ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, StrictlyUpperTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = 0; i < j; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(int i = j; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, StrictlyLowerTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = j+1; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(int i = 0; i <= j; ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, UnitUpperTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = 0; i < j; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
{
for(int i = j+1; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
dst.coeffRef(j, j) = 1;
}
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, UnitLowerTriangular, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = j+1; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
{
for(int i = 0; i < j; ++i)
dst.coeffRef(i, j) = 0;
dst.coeffRef(j, j) = 1;
}
}
}
};
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
{
if(OtherDerived::Flags & EvalBeforeAssigningBit)
{
typename OtherDerived::PlainMatrixType other_evaluated(other.rows(), other.cols());
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
lazyAssign(other_evaluated);
}
else
lazyAssign(other.derived());
return *this;
}
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
const bool unroll = MatrixType::SizeAtCompileTime * ei_traits<OtherDerived>::CoeffReadCost / 2
<= EIGEN_UNROLLING_LIMIT;
ei_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
ei_triangular_assignment_selector
<MatrixType, OtherDerived, int(Mode),
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
false // do not change the opposite triangular part
>::run(m_matrix.const_cast_derived(), other.derived());
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
{
ei_assert(Mode == OtherDerived::Mode);
if(ei_traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
{
typename OtherDerived::PlainMatrixType other_evaluated(other.rows(), other.cols());
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
lazyAssign(other_evaluated);
}
else
lazyAssign(other.derived());
return *this;
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
const bool unroll = MatrixType::SizeAtCompileTime * ei_traits<OtherDerived>::CoeffReadCost / 2
<= EIGEN_UNROLLING_LIMIT;
ei_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
ei_triangular_assignment_selector
<MatrixType, OtherDerived, int(Mode),
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
false // preserve the opposite triangular part
>::run(m_matrix.const_cast_derived(), other.derived()._expression());
}
/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
if(ei_traits<Derived>::Flags & EvalBeforeAssigningBit)
{
typename Derived::PlainMatrixType other_evaluated(rows(), cols());
evalToLazy(other_evaluated);
other.derived().swap(other_evaluated);
}
else
evalToLazy(other.derived());
}
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
const bool unroll = DenseDerived::SizeAtCompileTime * Derived::CoeffReadCost / 2
<= EIGEN_UNROLLING_LIMIT;
ei_assert(this->rows() == other.rows() && this->cols() == other.cols());
ei_triangular_assignment_selector
<DenseDerived, typename ei_traits<Derived>::ExpressionType, Derived::Mode,
unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
true // clear the opposite triangular part
>::run(other.derived(), derived()._expression());
}
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
EIGEN_DEPRECATED const TriangularView<Derived, Mode> MatrixBase<Derived>::part() const
{
return derived();
}
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
EIGEN_DEPRECATED TriangularView<Derived, Mode> MatrixBase<Derived>::part()
{
return derived();
}
/** \nonstableyet
* \returns an expression of a triangular view extracted from the current matrix
*
* The parameter \a Mode can have the following values: \c UpperTriangular, \c StrictlyUpperTriangular, \c UnitUpperTriangular,
* \c LowerTriangular, \c StrictlyLowerTriangular, \c UnitLowerTriangular.
*
* Example: \include MatrixBase_extract.cpp
* Output: \verbinclude MatrixBase_extract.out
*
* \sa class TriangularView
*/
template<typename Derived>
template<unsigned int Mode>
TriangularView<Derived, Mode> MatrixBase<Derived>::triangularView()
{
return derived();
}
/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
const TriangularView<Derived, Mode> MatrixBase<Derived>::triangularView() const
{
return derived();
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
* within the precision given by \a prec.
*
* \sa isLowerTriangular(), extract(), part(), marked()
*/
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnUpperTriangularPart = static_cast<RealScalar>(-1);
for(int j = 0; j < cols(); ++j)
for(int i = 0; i <= j; ++i)
{
RealScalar absValue = ei_abs(coeff(i,j));
if(absValue > maxAbsOnUpperTriangularPart) maxAbsOnUpperTriangularPart = absValue;
}
for(int j = 0; j < cols()-1; ++j)
for(int i = j+1; i < rows(); ++i)
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnUpperTriangularPart, prec)) return false;
return true;
}
/** \returns true if *this is approximately equal to a lower triangular matrix,
* within the precision given by \a prec.
*
* \sa isUpperTriangular(), extract(), part(), marked()
*/
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnLowerTriangularPart = static_cast<RealScalar>(-1);
for(int j = 0; j < cols(); ++j)
for(int i = j; i < rows(); ++i)
{
RealScalar absValue = ei_abs(coeff(i,j));
if(absValue > maxAbsOnLowerTriangularPart) maxAbsOnLowerTriangularPart = absValue;
}
for(int j = 1; j < cols(); ++j)
for(int i = 0; i < j; ++i)
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnLowerTriangularPart, prec)) return false;
return true;
}
#endif // EIGEN_TRIANGULARMATRIX_H
|