1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H
/** \class Transpose
* \ingroup Core_Module
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
template<typename MatrixType>
struct ei_traits<Transpose<MatrixType> > : ei_traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename ei_traits<MatrixType>::StorageKind StorageKind;
typedef typename ei_traits<MatrixType>::XprKind XprKind;
enum {
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
Flags = int(_MatrixTypeNested::Flags & ~NestByRefBit) ^ RowMajorBit,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
InnerStrideAtCompileTime = ei_inner_stride_at_compile_time<MatrixType>::ret,
OuterStrideAtCompileTime = ei_outer_stride_at_compile_time<MatrixType>::ret
};
};
template<typename MatrixType, typename StorageKind> class TransposeImpl;
template<typename MatrixType> class Transpose
: public TransposeImpl<MatrixType,typename ei_traits<MatrixType>::StorageKind>
{
public:
typedef typename TransposeImpl<MatrixType,typename ei_traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
inline Index rows() const { return m_matrix.cols(); }
inline Index cols() const { return m_matrix.rows(); }
/** \returns the nested expression */
const typename ei_cleantype<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename ei_cleantype<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
const typename MatrixType::Nested m_matrix;
};
template<typename MatrixType, bool HasDirectAccess = ei_has_direct_access<MatrixType>::ret>
struct ei_TransposeImpl_base
{
typedef typename ei_dense_xpr_base<Transpose<MatrixType> >::type type;
};
template<typename MatrixType>
struct ei_TransposeImpl_base<MatrixType, false>
{
typedef typename ei_dense_xpr_base<Transpose<MatrixType> >::type type;
};
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
: public ei_TransposeImpl_base<MatrixType>::type
{
public:
typedef typename ei_TransposeImpl_base<MatrixType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
inline Scalar* data() { return derived().nestedExpression().data(); }
inline const Scalar* data() const { return derived().nestedExpression().data(); }
inline Scalar& coeffRef(Index row, Index col)
{
return const_cast_derived().nestedExpression().coeffRef(col, row);
}
inline Scalar& coeffRef(Index index)
{
return const_cast_derived().nestedExpression().coeffRef(index);
}
inline const CoeffReturnType coeff(Index row, Index col) const
{
return derived().nestedExpression().coeff(col, row);
}
inline const CoeffReturnType coeff(Index index) const
{
return derived().nestedExpression().coeff(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return derived().nestedExpression().template packet<LoadMode>(col, row);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
const_cast_derived().nestedExpression().template writePacket<LoadMode>(col, row, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return derived().nestedExpression().template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
const_cast_derived().nestedExpression().template writePacket<LoadMode>(index, x);
}
};
/** \returns an expression of the transpose of *this.
*
* Example: \include MatrixBase_transpose.cpp
* Output: \verbinclude MatrixBase_transpose.out
*
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
* \code
* m = m.transpose(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the transposeInPlace() method:
* \code
* m.transposeInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.transpose().eval();
* \endcode
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline Transpose<Derived>
DenseBase<Derived>::transpose()
{
return derived();
}
/** This is the const version of transpose().
*
* Make sure you read the warning for transpose() !
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline const Transpose<Derived>
DenseBase<Derived>::transpose() const
{
return derived();
}
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
*
* Example: \include MatrixBase_adjoint.cpp
* Output: \verbinclude MatrixBase_adjoint.out
*
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
* \code
* m = m.adjoint(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the adjointInPlace() method:
* \code
* m.adjointInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.adjoint().eval();
* \endcode
*
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
return this->transpose();
}
/***************************************************************************
* "in place" transpose implementation
***************************************************************************/
template<typename MatrixType,
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
struct ei_inplace_transpose_selector;
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
static void run(MatrixType& m) {
m.template triangularView<StrictlyUpper>().swap(m.transpose());
}
};
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
static void run(MatrixType& m) {
if (m.rows()==m.cols())
m.template triangularView<StrictlyUpper>().swap(m.transpose());
else
m = m.transpose().eval();
}
};
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.transposeInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.transpose().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
* If you just need the transpose of a matrix, use transpose().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), adjointInPlace() */
template<typename Derived>
inline void DenseBase<Derived>::transposeInPlace()
{
ei_inplace_transpose_selector<Derived>::run(derived());
}
/***************************************************************************
* "in place" adjoint implementation
***************************************************************************/
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.adjointInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.adjoint().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
* If you just need the adjoint of a matrix, use adjoint().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), transposeInPlace() */
template<typename Derived>
inline void MatrixBase<Derived>::adjointInPlace()
{
derived() = adjoint().eval();
}
#ifndef EIGEN_NO_DEBUG
// The following is to detect aliasing problems in most common cases.
template<typename BinOp,typename NestedXpr>
struct ei_blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef SelfCwiseBinaryOp<BinOp,NestedXpr> XprType;
static inline const XprType extract(const XprType& x) { return x; }
};
template<bool DestIsTransposed, typename OtherDerived>
struct ei_check_transpose_aliasing_compile_time_selector
{
enum { ret = ei_blas_traits<OtherDerived>::IsTransposed != DestIsTransposed
};
};
template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct ei_check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
enum { ret = ei_blas_traits<DerivedA>::IsTransposed != DestIsTransposed
|| ei_blas_traits<DerivedB>::IsTransposed != DestIsTransposed
};
};
template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
struct ei_check_transpose_aliasing_run_time_selector
{
static bool run(const Scalar* dest, const OtherDerived& src)
{
return (ei_blas_traits<OtherDerived>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src));
}
};
template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct ei_check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
{
return ((ei_blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src.lhs())))
|| ((ei_blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src.rhs())));
}
};
// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
// This is actually a good warning: in expressions that don't have any transposing, the condition is
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
// and again for all these expressions that don't need it.
template<typename Derived, typename OtherDerived,
bool MightHaveTransposeAliasing
= ei_check_transpose_aliasing_compile_time_selector
<ei_blas_traits<Derived>::IsTransposed,OtherDerived>::ret
>
struct checkTransposeAliasing_impl
{
static void run(const Derived& dst, const OtherDerived& other)
{
ei_assert((!ei_check_transpose_aliasing_run_time_selector
<typename Derived::Scalar,ei_blas_traits<Derived>::IsTransposed,OtherDerived>
::run(ei_extract_data(dst), other))
&& "aliasing detected during tranposition, use transposeInPlace() "
"or evaluate the rhs into a temporary using .eval()");
}
};
template<typename Derived, typename OtherDerived>
struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
{
static void run(const Derived&, const OtherDerived&)
{
}
};
template<typename Derived>
template<typename OtherDerived>
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
{
checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
}
#endif
#endif // EIGEN_TRANSPOSE_H
|