1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H
/** \class Transpose
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
template<typename MatrixType>
struct ei_traits<Transpose<MatrixType> >
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit)
& ~(LowerTriangularBit | UpperTriangularBit))
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename MatrixType> class Transpose
: public MatrixBase<Transpose<MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
class InnerIterator;
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
inline int rows() const { return m_matrix.cols(); }
inline int cols() const { return m_matrix.rows(); }
inline int nonZeros() const { return m_matrix.nonZeros(); }
inline int stride(void) const { return m_matrix.stride(); }
inline Scalar& coeffRef(int row, int col)
{
return m_matrix.const_cast_derived().coeffRef(col, row);
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(col, row);
}
inline const Scalar coeff(int index) const
{
return m_matrix.coeff(index);
}
inline Scalar& coeffRef(int index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(int row, int col) const
{
return m_matrix.template packet<LoadMode>(col, row);
}
template<int LoadMode>
inline void writePacket(int row, int col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x);
}
template<int LoadMode>
inline const PacketScalar packet(int index) const
{
return m_matrix.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(int index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
}
protected:
const typename MatrixType::Nested m_matrix;
};
/** \returns an expression of the transpose of *this.
*
* Example: \include MatrixBase_transpose.cpp
* Output: \verbinclude MatrixBase_transpose.out
*
* \sa adjoint(), class DiagonalCoeffs */
template<typename Derived>
inline Transpose<Derived>
MatrixBase<Derived>::transpose()
{
return derived();
}
/** This is the const version of transpose(). \sa adjoint() */
template<typename Derived>
inline const Transpose<Derived>
MatrixBase<Derived>::transpose() const
{
return derived();
}
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
*
* Example: \include MatrixBase_adjoint.cpp
* Output: \verbinclude MatrixBase_adjoint.out
*
* \sa transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
return conjugate().nestByValue();
}
#endif // EIGEN_TRANSPOSE_H
|