1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_STABLENORM_H
#define EIGEN_STABLENORM_H
template<typename ExpressionType, typename Scalar>
inline void ei_stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
{
Scalar max = bl.cwise().abs().maxCoeff();
if (max>scale)
{
ssq = ssq * ei_abs2(scale/max);
scale = max;
invScale = Scalar(1)/scale;
}
// TODO if the max is much much smaller than the current scale,
// then we can neglect this sub vector
ssq += (bl*invScale).squaredNorm();
}
/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
* This version use a blockwise two passes algorithm:
* 1 - find the absolute largest coefficient \c s
* 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
*
* For architecture/scalar types supporting vectorization, this version
* is faster than blueNorm(). Otherwise the blueNorm() is much faster.
*
* \sa norm(), blueNorm(), hypotNorm()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::stableNorm() const
{
const int blockSize = 4096;
RealScalar scale = 0;
RealScalar invScale;
RealScalar ssq = 0; // sum of square
enum {
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested
};
int n = size();
int bi=0;
if ((int(Flags)&DirectAccessBit) && !(int(Flags)&AlignedBit))
{
bi = ei_alignmentOffset(&const_cast_derived().coeffRef(0), n);
if (bi>0)
ei_stable_norm_kernel(start(bi), ssq, scale, invScale);
}
for (; bi<n; bi+=blockSize)
ei_stable_norm_kernel(VectorBlock<Derived,Dynamic,Alignment>(derived(),bi,std::min(blockSize, n - bi)), ssq, scale, invScale);
return scale * ei_sqrt(ssq);
}
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
* ACM TOMS, Vol 4, Issue 1, 1978.
*
* For architecture/scalar types without vectorization, this version
* is much faster than stableNorm(). Otherwise the stableNorm() is faster.
*
* \sa norm(), stableNorm(), hypotNorm()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::blueNorm() const
{
static int nmax = -1;
static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
if(nmax <= 0)
{
int nbig, ibeta, it, iemin, iemax, iexp;
RealScalar abig, eps;
// This program calculates the machine-dependent constants
// bl, b2, slm, s2m, relerr overfl, nmax
// from the "basic" machine-dependent numbers
// nbig, ibeta, it, iemin, iemax, rbig.
// The following define the basic machine-dependent constants.
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
// are used. For any specific computer, each of the assignment
// statements can be replaced
nbig = std::numeric_limits<int>::max(); // largest integer
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number
// Check the basic machine-dependent constants.
if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
|| (it<=4 && ibeta <= 3 ) || it<2)
{
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
}
iexp = -((1-iemin)/2);
b1 = Scalar(std::pow(double(ibeta),iexp)); // lower boundary of midrange
iexp = (iemax + 1 - it)/2;
b2 = Scalar(std::pow(double(ibeta),iexp)); // upper boundary of midrange
iexp = (2-iemin)/2;
s1m = Scalar(std::pow(double(ibeta),iexp)); // scaling factor for lower range
iexp = - ((iemax+it)/2);
s2m = Scalar(std::pow(double(ibeta),iexp)); // scaling factor for upper range
overfl = rbig*s2m; // overfow boundary for abig
eps = Scalar(std::pow(double(ibeta), 1-it));
relerr = ei_sqrt(eps); // tolerance for neglecting asml
abig = 1.0/eps - 1.0;
if (RealScalar(nbig)>abig) nmax = int(abig); // largest safe n
else nmax = nbig;
}
int n = size();
RealScalar ab2 = b2 / RealScalar(n);
RealScalar asml = RealScalar(0);
RealScalar amed = RealScalar(0);
RealScalar abig = RealScalar(0);
for(int j=0; j<n; ++j)
{
RealScalar ax = ei_abs(coeff(j));
if(ax > ab2) abig += ei_abs2(ax*s2m);
else if(ax < b1) asml += ei_abs2(ax*s1m);
else amed += ei_abs2(ax);
}
if(abig > RealScalar(0))
{
abig = ei_sqrt(abig);
if(abig > overfl)
{
ei_assert(false && "overflow");
return rbig;
}
if(amed > RealScalar(0))
{
abig = abig/s2m;
amed = ei_sqrt(amed);
}
else
return abig/s2m;
}
else if(asml > RealScalar(0))
{
if (amed > RealScalar(0))
{
abig = ei_sqrt(amed);
amed = ei_sqrt(asml) / s1m;
}
else
return ei_sqrt(asml)/s1m;
}
else
return ei_sqrt(amed);
asml = std::min(abig, amed);
abig = std::max(abig, amed);
if(asml <= abig*relerr)
return abig;
else
return abig * ei_sqrt(RealScalar(1) + ei_abs2(asml/abig));
}
/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
* This version use a concatenation of hypot() calls, and it is very slow.
*
* \sa norm(), stableNorm()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::hypotNorm() const
{
return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
}
#endif // EIGEN_STABLENORM_H
|