aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/SelfAdjointView.h
blob: a8ea7cd62bc29aa2710804fbdc5e9fd2ecf22bd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINTMATRIX_H
#define EIGEN_SELFADJOINTMATRIX_H

/** \class SelfAdjointView
  * \nonstableyet
  *
  * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
  *
  * \param MatrixType the type of the dense matrix storing the coefficients
  * \param TriangularPart can be either \c LowerTriangular or \c UpperTriangular
  *
  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
  * and most of the time this is the only way that it is used.
  *
  * \sa class TriangularBase, MatrixBase::selfAdjointView()
  */
template<typename MatrixType, unsigned int TriangularPart>
struct ei_traits<SelfAdjointView<MatrixType, TriangularPart> > : ei_traits<MatrixType>
{
  typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
  typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
  typedef MatrixType ExpressionType;
  enum {
    Mode = TriangularPart | SelfAdjointBit,
    Flags =  _MatrixTypeNested::Flags & (HereditaryBits)
           & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
    CoeffReadCost = _MatrixTypeNested::CoeffReadCost
  };
};

template<typename Lhs,typename Rhs>
struct ei_selfadjoint_vector_product_returntype;

// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
  : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
{
  public:

    typedef TriangularBase<SelfAdjointView> Base;
    typedef typename ei_traits<SelfAdjointView>::Scalar Scalar;
    enum {
      Mode = ei_traits<SelfAdjointView>::Mode
    };
    typedef typename MatrixType::PlainMatrixType PlainMatrixType;

    inline SelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
    { ei_assert(ei_are_flags_consistent<Mode>::ret); }

    inline int rows() const { return m_matrix.rows(); }
    inline int cols() const { return m_matrix.cols(); }
    inline int stride() const { return m_matrix.stride(); }

    /** \sa MatrixBase::coeff()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar coeff(int row, int col) const
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.coeff(row, col);
    }

    /** \sa MatrixBase::coeffRef()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar& coeffRef(int row, int col)
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.const_cast_derived().coeffRef(row, col);
    }

    /** \internal */
    const MatrixType& _expression() const { return m_matrix; }

    /** Efficient self-adjoint matrix times vector product */
    // TODO this product is far to be ready
    template<typename OtherDerived>
    ei_selfadjoint_vector_product_returntype<SelfAdjointView,OtherDerived>
    operator*(const MatrixBase<OtherDerived>& rhs) const
    {
      return ei_selfadjoint_vector_product_returntype<SelfAdjointView,OtherDerived>(*this, rhs.derived());
    }

    /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
      * \f$ this = this + \alpha ( u v^* + v u^*) \f$
      * 
      * The vectors \a u and \c v \b must be column vectors, however they can be
      * a adjoint expression without any overhead. Only the meaningful triangular
      * part of the matrix is updated, the rest is left unchanged.
      */
    template<typename DerivedU, typename DerivedV>
    void rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));

/////////// Cholesky module ///////////

    const LLT<PlainMatrixType, UpLo> llt() const;
    const LDLT<PlainMatrixType> ldlt() const;

  protected:

    const typename MatrixType::Nested m_matrix;
};

template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, UnrollCount, ClearOpposite>
{
  enum {
    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
  };

  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, UnrollCount-1, ClearOpposite>::run(dst, src);

    if(row == col)
      dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
    else if(row < col)
      dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
  }
};

// selfadjoint to dense matrix
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, Dynamic, ClearOpposite>
{
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(int j = 0; j < dst.cols(); ++j)
    {
      for(int i = 0; i < j; ++i)
        dst.coeffRef(j, i) = ei_conj(dst.coeffRef(i, j) = src.coeff(i, j));
      dst.coeffRef(j, j) = ei_real(src.coeff(j, j));
    }
  }
};

/***************************************************************************
* Wrapper to ei_product_selfadjoint_vector
***************************************************************************/

template<typename Lhs,typename Rhs>
struct ei_selfadjoint_vector_product_returntype
  : public ReturnByValue<ei_selfadjoint_vector_product_returntype<Lhs,Rhs>,
                         Matrix<typename ei_traits<Rhs>::Scalar,
                                Rhs::RowsAtCompileTime,Rhs::ColsAtCompileTime> >
{
  typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
  ei_selfadjoint_vector_product_returntype(const Lhs& lhs, const Rhs& rhs)
    : m_lhs(lhs), m_rhs(rhs)
  {}

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dst.resize(m_rhs.rows(), m_rhs.cols());
    ei_product_selfadjoint_vector<typename Lhs::Scalar,ei_traits<Lhs>::Flags&RowMajorBit,
      Lhs::Mode&(UpperTriangularBit|LowerTriangularBit)>
      (
        m_lhs.rows(), // size
        m_lhs._expression().data(), // lhs
        m_lhs.stride(), // lhsStride,
        m_rhs.data(), // rhs
        // int rhsIncr,
        dst.data() // res
      );
  }

  const Lhs m_lhs;
  const typename Rhs::Nested m_rhs;
};

/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/

template<typename Derived>
template<unsigned int Mode>
const SelfAdjointView<Derived, Mode> MatrixBase<Derived>::selfadjointView() const
{
  return derived();
}

template<typename Derived>
template<unsigned int Mode>
SelfAdjointView<Derived, Mode> MatrixBase<Derived>::selfadjointView()
{
  return derived();
}

#endif // EIGEN_SELFADJOINTMATRIX_H