1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SELFADJOINTMATRIX_H
#define EIGEN_SELFADJOINTMATRIX_H
namespace Eigen {
/** \class SelfAdjointView
* \ingroup Core_Module
*
*
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
*
* \param MatrixType the type of the dense matrix storing the coefficients
* \param TriangularPart can be either \c #Lower or \c #Upper
*
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
* and most of the time this is the only way that it is used.
*
* \sa class TriangularBase, MatrixBase::selfadjointView()
*/
namespace internal {
template<typename MatrixType, unsigned int UpLo>
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef MatrixType ExpressionType;
typedef typename MatrixType::PlainObject FullMatrixType;
enum {
Mode = UpLo | SelfAdjoint,
Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
& (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
};
};
}
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
: public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
{
public:
typedef _MatrixType MatrixType;
typedef TriangularBase<SelfAdjointView> Base;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
/** \brief The type of coefficients in this matrix */
typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
typedef typename MatrixType::Index Index;
enum {
Mode = internal::traits<SelfAdjointView>::Mode,
Flags = internal::traits<SelfAdjointView>::Flags
};
typedef typename MatrixType::PlainObject PlainObject;
EIGEN_DEVICE_FUNC
inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
{}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_matrix.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_matrix.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_matrix.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_matrix.innerStride(); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
return m_matrix.coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index col)
{
Base::check_coordinates_internal(row, col);
return m_matrix.const_cast_derived().coeffRef(row, col);
}
/** \internal */
EIGEN_DEVICE_FUNC
const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
EIGEN_DEVICE_FUNC
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
EIGEN_DEVICE_FUNC
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
const Product<SelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
const Product<OtherDerived,SelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
{
return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
}
friend EIGEN_DEVICE_FUNC
const SelfAdjointView<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,MatrixType>,UpLo>
operator*(const Scalar& s, const SelfAdjointView& mat)
{
return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
}
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
* \returns a reference to \c *this
*
* The vectors \a u and \c v \b must be column vectors, however they can be
* a adjoint expression without any overhead. Only the meaningful triangular
* part of the matrix is updated, the rest is left unchanged.
*
* \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
*/
template<typename DerivedU, typename DerivedV>
EIGEN_DEVICE_FUNC
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
*
* \returns a reference to \c *this
*
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
* call this function with u.adjoint().
*
* \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
*/
template<typename DerivedU>
EIGEN_DEVICE_FUNC
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
/////////// Cholesky module ///////////
const LLT<PlainObject, UpLo> llt() const;
const LDLT<PlainObject, UpLo> ldlt() const;
/////////// Eigenvalue module ///////////
/** Real part of #Scalar */
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Return type of eigenvalues() */
typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
EIGEN_DEVICE_FUNC
EigenvaluesReturnType eigenvalues() const;
EIGEN_DEVICE_FUNC
RealScalar operatorNorm() const;
protected:
MatrixTypeNested m_matrix;
};
// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
// {
// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
// }
// selfadjoint to dense matrix
namespace internal {
// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
// in the future selfadjoint-ness should be defined by the expression traits
// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
template<typename MatrixType, unsigned int Mode>
struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SelfAdjointShape Shape;
static const int AssumeAliasing = 0;
};
template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
: public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
{
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
typedef typename Base::DstXprType DstXprType;
typedef typename Base::SrcXprType SrcXprType;
using Base::m_dst;
using Base::m_src;
using Base::m_functor;
public:
typedef typename Base::DstEvaluatorType DstEvaluatorType;
typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
typedef typename Base::Scalar Scalar;
typedef typename Base::Index Index;
typedef typename Base::AssignmentTraits AssignmentTraits;
triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr)
{}
void assignCoeff(Index row, Index col)
{
eigen_internal_assert(row!=col);
Scalar tmp = m_src.coeff(row,col);
m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
}
void assignDiagonalCoeff(Index id)
{
Base::assignCoeff(id,id);
}
void assignOppositeCoeff(Index, Index)
{ eigen_internal_assert(false && "should never be called"); }
};
} // end namespace internal
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView() const
{
return derived();
}
template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView()
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_SELFADJOINTMATRIX_H
|