aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Replicate.h
blob: 87dea053323a51cedd5538a5e143dbeaf4a540c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_REPLICATE_H
#define EIGEN_REPLICATE_H

/**
  * \class Replicate
  * \ingroup Core_Module
  *
  * \brief Expression of the multiple replication of a matrix or vector
  *
  * \param MatrixType the type of the object we are replicating
  *
  * This class represents an expression of the multiple replication of a matrix or vector.
  * It is the return type of DenseBase::replicate() and most of the time
  * this is the only way it is used.
  *
  * \sa DenseBase::replicate()
  */
template<typename MatrixType,int RowFactor,int ColFactor>
struct ei_traits<Replicate<MatrixType,RowFactor,ColFactor> >
 : ei_traits<MatrixType>
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename ei_traits<MatrixType>::StorageKind StorageKind;
  typedef typename ei_traits<MatrixType>::XprKind XprKind;
  typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
  typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
  enum {
    RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic
                      ? Dynamic
                      : RowFactor * MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic
                      ? Dynamic
                      : ColFactor * MatrixType::ColsAtCompileTime,
   //FIXME we don't propagate the max sizes !!!
    MaxRowsAtCompileTime = RowsAtCompileTime,
    MaxColsAtCompileTime = ColsAtCompileTime,
    IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
               : MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
               : (MatrixType::Flags & RowMajorBit) ? 1 : 0,
    Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
    CoeffReadCost = _MatrixTypeNested::CoeffReadCost
  };
};

template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
  : public ei_dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
{
  public:

    typedef typename ei_dense_xpr_base<Replicate>::type Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)

    template<typename OriginalMatrixType>
    inline explicit Replicate(const OriginalMatrixType& matrix)
      : m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor)
    {
      EIGEN_STATIC_ASSERT((ei_is_same_type<MatrixType,OriginalMatrixType>::ret),
                          THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
      ei_assert(RowFactor!=Dynamic && ColFactor!=Dynamic);
    }

    template<typename OriginalMatrixType>
    inline Replicate(const OriginalMatrixType& matrix, int rowFactor, int colFactor)
      : m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor)
    {
      EIGEN_STATIC_ASSERT((ei_is_same_type<MatrixType,OriginalMatrixType>::ret),
                          THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
    }

    inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); }
    inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); }

    inline Scalar coeff(Index row, Index col) const
    {
      // try to avoid using modulo; this is a pure optimization strategy
      const Index actual_row  = ei_traits<MatrixType>::RowsAtCompileTime==1 ? 0
                            : RowFactor==1 ? row
                            : row%m_matrix.rows();
      const Index actual_col  = ei_traits<MatrixType>::ColsAtCompileTime==1 ? 0
                            : ColFactor==1 ? col
                            : col%m_matrix.cols();

      return m_matrix.coeff(actual_row, actual_col);
    }
    template<int LoadMode>
    inline PacketScalar packet(Index row, Index col) const
    {
      const Index actual_row  = ei_traits<MatrixType>::RowsAtCompileTime==1 ? 0
                            : RowFactor==1 ? row
                            : row%m_matrix.rows();
      const Index actual_col  = ei_traits<MatrixType>::ColsAtCompileTime==1 ? 0
                            : ColFactor==1 ? col
                            : col%m_matrix.cols();

      return m_matrix.template packet<LoadMode>(actual_row, actual_col);
    }


  protected:
    const typename MatrixType::Nested m_matrix;
    const ei_variable_if_dynamic<Index, RowFactor> m_rowFactor;
    const ei_variable_if_dynamic<Index, ColFactor> m_colFactor;
};

/**
  * \return an expression of the replication of \c *this
  *
  * Example: \include MatrixBase_replicate.cpp
  * Output: \verbinclude MatrixBase_replicate.out
  *
  * \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
  */
template<typename Derived>
template<int RowFactor, int ColFactor>
inline const Replicate<Derived,RowFactor,ColFactor>
DenseBase<Derived>::replicate() const
{
  return Replicate<Derived,RowFactor,ColFactor>(derived());
}

/**
  * \return an expression of the replication of \c *this
  *
  * Example: \include MatrixBase_replicate_int_int.cpp
  * Output: \verbinclude MatrixBase_replicate_int_int.out
  *
  * \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
  */
template<typename Derived>
inline const Replicate<Derived,Dynamic,Dynamic>
DenseBase<Derived>::replicate(Index rowFactor,Index colFactor) const
{
  return Replicate<Derived,Dynamic,Dynamic>(derived(),rowFactor,colFactor);
}

/**
  * \return an expression of the replication of each column (or row) of \c *this
  *
  * Example: \include DirectionWise_replicate_int.cpp
  * Output: \verbinclude DirectionWise_replicate_int.out
  *
  * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate
  */
template<typename ExpressionType, int Direction>
const typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
VectorwiseOp<ExpressionType,Direction>::replicate(Index factor) const
{
  return typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
          (_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
}

#endif // EIGEN_REPLICATE_H