1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REDUX_H
#define EIGEN_REDUX_H
// TODO
// * implement other kind of vectorization
// * factorize code
/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/
template<typename Func, typename Derived>
struct ei_redux_traits
{
private:
enum {
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
InnerMaxSize = int(Derived::Flags)&RowMajorBit
? Derived::MaxColsAtCompileTime
: Derived::MaxRowsAtCompileTime
};
enum {
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
&& (ei_functor_traits<Func>::PacketAccess),
MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
};
public:
enum {
Vectorization = int(MayLinearVectorize) ? int(LinearVectorization)
: int(MaySliceVectorize) ? int(SliceVectorization)
: int(NoVectorization)
};
private:
enum {
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
};
public:
enum {
Unrolling = Cost <= UnrollingLimit
? CompleteUnrolling
: NoUnrolling
};
};
/***************************************************************************
* Part 2 : unrollers
***************************************************************************/
/*** no vectorization ***/
template<typename Func, typename Derived, int Start, int Length>
struct ei_redux_novec_unroller
{
enum {
HalfLength = Length/2
};
typedef typename Derived::Scalar Scalar;
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func)
{
return func(ei_redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
ei_redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
}
};
template<typename Func, typename Derived, int Start>
struct ei_redux_novec_unroller<Func, Derived, Start, 1>
{
enum {
col = Start / Derived::RowsAtCompileTime,
row = Start % Derived::RowsAtCompileTime
};
typedef typename Derived::Scalar Scalar;
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&)
{
return mat.coeff(row, col);
}
};
/*** vectorization ***/
template<typename Func, typename Derived, int Start, int Length>
struct ei_redux_vec_unroller
{
enum {
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
HalfLength = Length/2
};
typedef typename Derived::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func)
{
return func.packetOp(
ei_redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
ei_redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
}
};
template<typename Func, typename Derived, int Start>
struct ei_redux_vec_unroller<Func, Derived, Start, 1>
{
enum {
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
row = int(Derived::Flags)&RowMajorBit
? index / int(Derived::ColsAtCompileTime)
: index % Derived::RowsAtCompileTime,
col = int(Derived::Flags)&RowMajorBit
? index % int(Derived::ColsAtCompileTime)
: index / Derived::RowsAtCompileTime,
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
};
typedef typename Derived::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&)
{
return mat.template packet<alignment>(row, col);
}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Func, typename Derived,
int Vectorization = ei_redux_traits<Func, Derived>::Vectorization,
int Unrolling = ei_redux_traits<Func, Derived>::Unrolling
>
struct ei_redux_impl;
template<typename Func, typename Derived>
struct ei_redux_impl<Func, Derived, NoVectorization, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
static Scalar run(const Derived& mat, const Func& func)
{
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
Scalar res;
res = mat.coeff(0, 0);
for(int i = 1; i < mat.rows(); ++i)
res = func(res, mat.coeff(i, 0));
for(int j = 1; j < mat.cols(); ++j)
for(int i = 0; i < mat.rows(); ++i)
res = func(res, mat.coeff(i, j));
return res;
}
};
template<typename Func, typename Derived>
struct ei_redux_impl<Func,Derived, NoVectorization, CompleteUnrolling>
: public ei_redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
{};
template<typename Func, typename Derived>
struct ei_redux_impl<Func, Derived, LinearVectorization, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
static Scalar run(const Derived& mat, const Func& func)
{
const int size = mat.size();
const int packetSize = ei_packet_traits<Scalar>::size;
const int alignedStart = (Derived::Flags & AlignedBit)
|| !(Derived::Flags & DirectAccessBit)
? 0
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
enum {
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
? Aligned : Unaligned
};
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
const int alignedEnd = alignedStart + alignedSize;
Scalar res;
if(alignedSize)
{
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index));
res = func.predux(packet_res);
for(int index = 0; index < alignedStart; ++index)
res = func(res,mat.coeff(index));
for(int index = alignedEnd; index < size; ++index)
res = func(res,mat.coeff(index));
}
else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = mat.coeff(0);
for(int index = 1; index < size; ++index)
res = func(res,mat.coeff(index));
}
return res;
}
};
template<typename Func, typename Derived>
struct ei_redux_impl<Func, Derived, SliceVectorization, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
static Scalar run(const Derived& mat, const Func& func)
{
const int innerSize = mat.innerSize();
const int outerSize = mat.outerSize();
enum {
packetSize = ei_packet_traits<Scalar>::size,
isRowMajor = Derived::Flags&RowMajorBit?1:0
};
const int packetedInnerSize = ((innerSize)/packetSize)*packetSize;
Scalar res;
if(packetedInnerSize)
{
PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
for(int j=0; j<outerSize; ++j)
for(int i=0; i<packetedInnerSize; i+=int(packetSize))
packet_res = func.packetOp(packet_res, mat.template packet<Unaligned>
(isRowMajor?j:i, isRowMajor?i:j));
res = func.predux(packet_res);
for(int j=0; j<outerSize; ++j)
for(int i=packetedInnerSize; i<innerSize; ++i)
res = func(res, mat.coeff(isRowMajor?j:i, isRowMajor?i:j));
}
else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = ei_redux_impl<Func, Derived, NoVectorization, NoUnrolling>::run(mat, func);
}
return res;
}
};
template<typename Func, typename Derived>
struct ei_redux_impl<Func, Derived, LinearVectorization, CompleteUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
Size = Derived::SizeAtCompileTime,
VectorizationSize = (Size / PacketSize) * PacketSize
};
EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func)
{
Scalar res = func.predux(ei_redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
if (VectorizationSize != Size)
res = func(res,ei_redux_novec_unroller<Func, Derived, VectorizationSize, Size-VectorizationSize>::run(mat,func));
return res;
}
};
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
* an assiociative operator. Both current STL and TR1 functor styles are handled.
*
* \sa MatrixBase::sum(), MatrixBase::minCoeff(), MatrixBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
*/
template<typename Derived>
template<typename Func>
inline typename ei_result_of<Func(typename ei_traits<Derived>::Scalar)>::type
MatrixBase<Derived>::redux(const Func& func) const
{
typename Derived::Nested nested(derived());
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
return ei_redux_impl<Func, ThisNested>
::run(nested, func);
}
/** \returns the minimum of all coefficients of *this
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::minCoeff() const
{
return this->redux(Eigen::ei_scalar_min_op<Scalar>());
}
/** \returns the maximum of all coefficients of *this
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::maxCoeff() const
{
return this->redux(Eigen::ei_scalar_max_op<Scalar>());
}
/** \returns the sum of all coefficients of *this
*
* \sa trace(), prod()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::sum() const
{
return this->redux(Eigen::ei_scalar_sum_op<Scalar>());
}
/** \returns the product of all coefficients of *this
*
* Example: \include MatrixBase_prod.cpp
* Output: \verbinclude MatrixBase_prod.out
*
* \sa sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::prod() const
{
return this->redux(Eigen::ei_scalar_product_op<Scalar>());
}
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
*
* \c *this can be any matrix, not necessarily square.
*
* \sa diagonal(), sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::trace() const
{
return diagonal().sum();
}
#endif // EIGEN_REDUX_H
|